Cognition 179 (2018) 266-297

journal homepage: www.elsevier.com/locate/cognit

Cognition

Contents lists available at ScienceDirect

Successful structure learning from observational data

Anselm Rothe™”, Ben Deverett®, Ralf Mayrhofer®, Charles Kemp®!

@ Department of Psychology, New York University, NY 10003, United States

Check for
updates

® Department of Molecular Biology and Princeton Neuroscience Institute, Princeton University, NJ 08544, United States

€ Department of Psychology, University of Gottingen, Germany
d Department of Psychology, Carnegie Mellon University, PA 15213, United States

ARTICLE INFO ABSTRACT

Keywords:

Causal structure learning
Causal reasoning
Bayesian modeling

Previous work suggests that humans find it difficult to learn the structure of causal systems given observational
data alone. We identify two conditions that enable successful structure learning from observational data: people
succeed if the underlying causal system is deterministic, and if each pattern of observations has a single root
cause. In four experiments, we show that either condition alone is sufficient to enable high levels of performance,

but that performance is poor if neither condition applies. A fifth experiment suggests that neither determinism
nor root sparsity takes priority over the other. Our data are broadly consistent with a Bayesian model that
embodies a preference for structures that make the observed data not only possible but probable.

1. Introduction

Causal networks have been widely used as models of the mental
representations that support causal reasoning. For example, an en-
gineer’s knowledge of the local electricity system may take the form of a
network in which the nodes represent power stations and the links in
the network represent connections between stations. Causal networks
of this kind may be learned in several ways. For example, an inter-
vention at station A that also affects station B provides evidence for a
directed link between A and B. Networks can also be learned via in-
struction: for example, a senior colleague might tell the engineer that A
sends power to B. Here, however, we focus on whether and how causal
networks can be learned from observational data. For example, the
engineer might observe that A and B both have voltage spikes on some
occasions, that B alone has voltage spikes on others, but that A is never
the only station with voltage spikes (Fig. 1). Based on these observa-
tions alone, the engineer might infer that A sends power to B.

The problem in Fig. 1 is an instance of structure learning because it
requires a choice between two distinct graph structures: one in which A
sends a link to B and the other in which B sends a link to A. Structure
learning can be distinguished from parameter learning problems that
require inferences about the properties of links in a known causal
structure (Danks, 2014; Jacobs & Kruschke, 2011). For example, an
engineer who knows that station A sends a link to station B might need
to learn about the fidelity with which signals at A are transmitted to B.
Causal parameter learning is often studied experimentally using

paradigms in which a focal effect is clearly distinguished from a set of
potential causes, and the learning problem is to infer the strength of the
relationship between each candidate cause and the effect (Lu, Yuille,
Liljeholm, Cheng, & Holyoak, 2008; Sloman, 2005). Here, however, we
focus on structure learning problems in which the variables are not
presorted into potential causes and effects.

A consensus has emerged that people find causal structure learning
to be difficult or impossible given observational data alone. For ex-
ample, Fernbach and Sloman (2009) cite results obtained by Steyvers,
Tenenbaum, Wagenmakers, and Blum (2003), Lagnado and Sloman
(2004), and White (2006) to support their claim that “observation of
covariation is insufficient for most participants to recover causal
structure” (p. 680). Here we challenge this consensus by identifying two
conditions that enable successful structure learning from observational
data alone. The first condition is causal determinism, and is satisfied if
each variable is a deterministic function of its direct causes. The second
condition is root sparsity, and is satisfied if each observation is the
outcome of a single root cause. Both conditions simplify the structure-
learning problem by reducing the number of possible explanations for a
given set of observations.

Determinism and root sparsity have both previously been discussed
in the literature on causal reasoning. Several lines of research suggest
that people tend to assume that causes are deterministic or near-de-
terministic (Frosch & Johnson-Laird, 2011; Lu et al., 2008; Schulz &
Sommerville, 2006; Yeung & Griffiths, 2015), and this assumption has
informed previous studies of structure learning (Mayrhofer &
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Fig. 1. Learning the causal structure of a power network given observations alone. (a) When voltage spikes are observed, either (i) stations A and B both have voltage
spikes or (ii) B alone has voltage spikes. (b) These observations support the inference that station A sends power to station B.

Waldmann, 2011; Mayrhofer & Waldmann, 2016; White, 2006). Our
work is related most closely to a previous study by White (2006), who
asked participants to learn the structure of deterministic causal systems
from observational data alone. White’s task proved to be difficult, and
performance was poor even when White gave his participants explicit
instructions about how to infer causal structure from observational
data. In contrast, we find that our participants are reliably able to infer
the structure of deterministic causal systems.

Although “root sparsity” is our own coinage, this term is related to a
cluster of existing ideas. Some work on causal attribution suggests that
people tend to prefer explanations that invoke a single root cause (Chi,
Roscoe, Slotta, Roy, & Chase, 2012; Lombrozo, 2007; Pacer &
Lombrozo, 2017), although Zemla, Sloman, Bechlivanidis, and Lagnado
(2017) report the opposite finding. Many studies of causal parameter
learning consider cases in which there are two potential causes of an
effect: a focal cause and a background cause. In this setting learners
seem to expect that exactly one of these potential causes is strong (Lu
et al., 2008). Mayrhofer and Waldmann (2015) explore a related idea in
their work on prior expectations in structure learning. One of the priors
that they consider captures the idea that an effect has a single cause.
The notion of root sparsity is also consistent with studies of structure
learning that focus on the role of interventions. Several researchers in
this literature suggest that people tend to succeed only when inter-
ventions are not accompanied by spurious changes. If this condition
holds then all changes observed following an intervention can be traced
back to a single root cause - that is, to the intervention (Fernbach &
Sloman, 2009; Lagnado & Sloman, 2004). Rottman and Keil (2012)
show that the same condition supports structure learning from ob-
servational data if the temporal sequence of the observations is known.

Our primary goal is to explore the extent to which determinism and
root sparsity allow people to succeed at structure learning. We find that
people perform well when determinism and root sparsity both apply,
and that either condition alone is sufficient to produce high levels of
performance. To help us understand our participants’ inferences, we
compare these inferences to the predictions of several computational
models. We initially focus on a model that we refer to as the Bayesian
structure learner, or the BSL for short. The BSL serves as a normative
benchmark that helps to evaluate the extent to which people succeed at
structure learning. Previous discussions of structure learning have also
considered Bayesian benchmarks, but Fernbach and Sloman (2009)
suggest that there is “little reason to treat them as descriptively correct”
(p. 681). In our setting, however, we find that people’s inferences align
closely with the predictions of our Bayesian model in many cases.

The BSL model contrasts with previous statistical accounts of
structure learning that are sensitive to patterns of conditional in-
dependence between variables (Pearl, 2000; Spirtes, Glymour, &
Scheines, 2001). Like several previous authors (Fernbach & Sloman,

2009; Mayrhofer & Waldmann, 2011), we believe that models that
track patterns of conditional independence are often too powerful to
capture inferences made by resource-bounded human learners. The BSL
model uses statistical inference in a different way, and relies on a
computation that assesses how much of a coincidence the available data
would be with respect to different possible structures. It is therefore
possible that people rely on a similar kind of statistical computation
when approaching structure learning problems.

2. Four classes of causal networks

The causal systems that we consider are simple activation networks.
Each network can be represented as a graph which may include cycles.
Each node in the graph can be active or inactive, and the edges in the
graph transmit activation from one node to another.

This paper will consider four qualitatively different classes of causal
networks that are summarized in Table 1. The causal links in a network
may be deterministic (D) or probabilistic (P), and root causes may be
sparse (S) or non-sparse (N), producing a total of four possibilities that
we refer to as classes DS, DN, PS, and PN.

Fig. 2a shows an example of activation spreading over a network
from class DS. At stage i, node A activates spontaneously. At stage ii,
node A has activated nodes B and C. At stage iii, node B has activated
node D, and the network has reached a stable end state. The links in the
network are deterministic, which means that they always succeed in
transferring activation from one node to another. Root causes are
sparse, which means that at most one node activates spontaneously per
trial. As a result, each end state is the consequence of a single root
cause. For example, the end state in Fig. 2a.iii is the consequence of the
initial activation of node A.

Fig. 2b shows a network for which root causes are non-sparse. At

Table 1
Four classes of causal networks. For each class, the number of possible causal
histories for a network with n nodes and [ links is shown.

Causal strength Number of root causes

1 >1
Deterministic Class DS (deterministic and Class DN (deterministic and
sparse) non-sparse)
Experiment 1 Experiment 2
n "
Probabilistic Class PS (probabilistic and Class PN (probabilistic and non-
sparse) sparse)
Experiment 3 Experiment 4
n(2-1) 21(2-1)
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Fig. 2. Activation spreading over example networks from each class. In each case, panel (i) shows a start state and panel (iii) shows a stable end state. In our
structure-learning task, the arrows were hidden and participants were asked to infer the structure of a network given a number of stable end states generated over

that network.

stage i, there are two spontaneous activations. Activation subsequently
spreads through the network, producing a stable end state in which all
nodes are active.

Fig. 2c shows a network with probabilistic links. On any given trial,
some links may be active (shown as black arrows) but others may be
inactive (shown as dashed gray arrows). Given a start state along with
information about which links are active, we assume that causal acti-
vation propagates deterministically along the active links. For example,
in Fig. 2¢, node A activates node B but A fails to activate C because the
link joining these nodes is inactive. The probabilistic nature of the links
can be captured using exogenous factors that determine which links are
active on a given trial. As discussed later, these exogenous factors can
be represented as variables—one for each link—and the causal system
can be represented as a functional causal model (Pearl, 2000) in which
exogenous variables are stochastic but all other variables are determi-
nistic functions of their parents.

Fig. 2d completes the set, and shows a network for which causal
links are probabilistic and root causes are non-sparse. Nodes A and E
simultaneously activate in stage i, but activation fails to reach node C
because both links directed towards this node are inactive.

(a) class DS (b) class DN
S T S

A B CDE A B CDE A B CDE
S, e — t; e e e o S e
So . — t2 e o o
S3 ° — t3 e o o Sip ® °
Sy ° — t4 .
S5 . _>t5 . S3g ® © o o o
(c) class PS (d) class PN

A B CDE A B CDE A B CDE
Sy ® — t1 o o . Sq e
S, ° — t2 ° °
S3 . — 13 e o o Sip ® .
Sy ° N t4 .
S5 ° _>t5 . S3p ® © e o o
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Fig. 2 shows only one end state for each of the networks shown. The
matrix notation in Fig. 3 is a convenient way to represent the full set of
end states for a given network. The rows of matrix S represent the
possible start states and each row of matrix T represents the corre-
sponding end state. For example, in Fig. 3b, s1, and 4, represent the
start and end states shown in Fig. 2b.

Although Fig. 2 shows how activation propagates over the four
networks, we consider the learning problem in which the end state
alone is observed and the learner must infer the structure of the net-
work. We will be especially interested in comparing patterns of per-
formance across the four classes of networks, and learning whether
people are able to reliably solve the structure learning problem for any
of the four classes.

Although our four classes of networks represent a range of possi-
bilities, the activation networks that we consider are constrained in
important ways. For example, they include only generative causal re-
lationships, and they assume that multiple causes combine according to
an OR function. Given the state of the literature, our most pressing
question is whether there are any classes of networks for which people
reliably succeed at structure learning. Instead of aiming for

Fig. 3. Activation matrices of start states (S)
and end states (T) for the four classes. For

T classes DN and PN only three of the 31 pos-
A B CDE sible start states are shown. For classes PS
ot e e e o and PN the end states depend on which links
! in the network are inactive: the end states
shown here are for the case in Fig. 2 for
— t12 e o o o o which two links are inactive.
— t31 e o o o o
A B CDE
— t1 o o .
— typ o o o o
N t31 e o o o o
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comprehensive coverage of the space of causal networks, we aimed to
work with causal systems that would give people the greatest chance of
performing well at structure learning.

We felt that working with DS networks (i.e. deterministic networks
with sparse root causes) would make the structure learning problem as
easy as possible. The remaining three network classes were created by
relaxing one or both of the characteristic assumptions of DS networks.
The determinism and root-sparsity assumptions both simplify the
structure learning problem because they reduce the number of end
states that can be generated over a given network. For example, if node
A sends a link to B, the two assumptions rule out states in which A is
active but B is not.

Our idea that DS networks might make the structure learning pro-
blem especially tractable is consistent with the literature on causal
learning. Recent studies suggest that children and adults both tend to
assume that causal relationships are deterministic (Lu et al., 2008;
Schulz & Sommerville, 2006; Yeung & Griffiths, 2015), and it is natural
to expect that people are most likely to succeed at structure learning
when reasoning about systems that match this assumption. At least one
previous account of structure learning directly incorporates the de-
terminism assumption. Mayrhofer and Waldmann (2011) propose that
people solve structure learning problems by identifying the structure
that minimizes the number of cases in which a cause is present but an
effect is absent. As these authors note, this “broken link” heuristic
corresponds to the expectation that causes are near-deterministic.

Some previous work also suggests that children and adults both tend
to assume that root causes are sparse (Bonawitz & Lombrozo, 2012;
Lombrozo, 2007; Pacer & Lombrozo, 2017). For example, Lombrozo
(2007) found that people preferred to attribute an observation to a
single root cause, even in cases in which a two-cause explanation was
more probable. Root sparsity is also consistent with the work of Chi
et al. (2012), who suggest that people’s explanations of both scientific
and everyday processes tend to invoke a single initiating or triggering
event. This emphasis on root sparsity, however, is challenged by Zemla
et al. (2017), who report that the perceived quality of an explanation is
correlated with the number of root causes that it invokes. The factors
that moderate the explanatory importance of root sparsity are not yet
clear, but Johnson, Valenti, and Keil (2017) suggest that root sparsity
carries more weight when reasoning about deterministic causal systems
than when reasoning about stochastic systems.

The expectation that root causes are sparse and that causal links are
deterministic is reminiscent of the work of Lu et al. (2008) on “sparse
and strong” priors for causal learning. Importantly, however, our notion
of sparsity is different from theirs. Their notion is formulated in terms of
type causation, and captures the expectation that each node in a causal
graph is expected to have at most one strong cause.” Our notion con-
nects more closely with token causation, and captures the idea that each
observed pattern of activation is expected to have a single root cause.
The two notions are not equivalent, and neither can be reduced to the
other. For example, the activation network in Fig. 2a is inconsistent
with their notion of sparsity, because A and B are both strong causes of
C. This network, however, is consistent with our notion of root sparsity
as long as spontaneous activations are very rare, which means that each
observed end state will result from the activation of a single node.

Although our notion of root sparsity connects with token causation,
the problem of structure learning is typically addressed with respect to
type causation and we follow in this tradition. More precisely, we
consider how a learner could infer a causal structure over a set of
variables after observing multiple patterns of activation over these
variables. These patterns are assumed to be generated over a single,
underlying network, and the edges in this network capture type

2 Lu et al. (2008) focus on graphs with two nodes, and do not explicitly say how their
notion of sparsity extends to arbitrary graphs. The idea that each node has at most one
strong cause seems like the most natural generalization to us.
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causation. Root sparsity applies if each observed pattern of activation is
the consequence of activating a single node in the network.

Much of the literature on causal learning considers directed acyclic
networks, but our four classes of networks include networks with cy-
cles. People often generate cycles when asked to draw causal networks
(Kim, Luhmann, Pierce, & Ryan, 2009), and cycles seem especially
natural in the context of our activation networks. If desired, these ac-
tivation networks could be represented as dynamic Bayesian networks
where the cycles are unrolled in time (Rehder & Martin, 2011). As
discussed later, our activation networks can also be represented using
functional causal models, which allow the possibility of cycles (Pearl,
2000).

From one perspective, allowing for cycles increases the difficulty of
structure learning by expanding the size of the hypothesis space of
possible structures. Given that most previous studies of structure
learning rule out cycles and find structure learning to be difficult, it
would be surprising to find that people succeed at structure learning
when cycles are allowed. From another perspective, ruling out cycles
would make our experiments more difficult by compromising the nat-
uralness of the structure-learning task. In our setting, there is no par-
ticular reason why cycles cannot occur, and asking participants to
generate acyclic structures would therefore amount to asking them to
operate under an arbitrary constraint.

3. Bayesian structure learning

We now describe a Bayesian approach to the problem of structure
learning. The primary purpose of our Bayesian framework is to provide
a benchmark for assessing how well people learn structures from the
four classes just described.

Suppose that we observe a data set D generated from an unknown
network G. Our framework can be applied to problems based on all four
of the network classes in Fig. 2, but we will initially assume that the
unknown network belongs to class DS: in other words, that causal re-
lationships are deterministic and that root causes are sparse.

Data set D can be formulated as a matrix, where each row d; re-
presents an end state sampled from network G. After observing D, the
posterior distribution over networks G is

P(GID) < P(DIG)P(G) = [HP(diIG)]P(G)
i 1

where we have assumed that the observations d; are independently
generated over network G. To complete the model we need to specify
the likelihood term P(d;IG) and the prior P(G). For now, we use a
uniform prior P(G), and compare two possible versions of the like-
lihood.

The BSL assumes that each observation d; is an end state that re-
sulted from a start state randomly sampled from a prior P(s) on start
states. The resulting likelihood can be computed by summing over
possible start states s;:

P(dilG) = ) P(di|G, 5)P(s))
: 2)

Because root causes are sparse, each start state includes a single active
node, and we assume that the prior on start states P(s;) is uniform.
P(d;|G, s) is either 1 or 0 depending on whether d; is the end state
associated with start state s;: that is, P(d;|G, s;) = 1 if and only if in-
itializing the network in state s; and allowing activation to propagate
through the network results in the stable state d;. We refer to Eq. (2) as
the graded likelihood because it captures the idea that some observa-
tions are more typical than others. For example, given the network in
Fig. 2a, the stable state ABCD can be produced in one way (A must be
the root cause) but the stable state BCD can be produced in two ways
(either B or C can be the root cause). For this network, the graded
likelihood captures the idea that BCD is more probable than any other
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observation.

Although the BSL relies on the graded likelihood, other Bayesian
models can be formulated by making different assumptions about the
likelihood. One possible alternative is a binary likelihood that considers
only whether observation d; is consistent with G:

1 if d; is consistent with G
0 otherwise.

P dl|G =
o= o

Observation d; is consistent with G if d; is an end state that results from
at least one valid start state. For the network in Fig. 2a, the binary
likelihood assigns the same probability to observations BCD and ABCD.

Combining the binary likelihood with a uniform prior P(G) pro-
duces a model that we refer to as the broken link model. The broken link
model computes a posterior distribution P(GID) that assigns equal
probability to all graphs G that are consistent with the data, and zero
probability to all remaining graphs. The model is consistent with the
broken link heuristic described by Mayrhofer and Waldmann (2011),
which assesses how well graph G accounts for data D by counting the
number of times that a parent node is active and a child node is in-
active. For networks belonging to class DS or DN, a graph is deemed
consistent with data D if and only if the graph has a broken link count of
zero. When applied to these classes of networks, the broken link model
is therefore equivalent to a model which assumes that people choose a
graph that minimizes the broken link count, and that people are in-
different among graphs that satisfy this criterion.

From a normative perspective, the two versions of the likelihood do
not have equal status. Our experiments explore settings in which each
observation d; is generated from a causal process that unfolds from a
start state, and observations that can be generated from multiple dif-
ferent start states should be encountered more frequently. The BSL
model is consistent with this notion and the broken link model is a foil
that will be useful for exploring the extent to which people’s inferences
are consistent with the graded likelihood.

To see how the models differ, consider a three-node problem where
D includes 6 observations and where each observation indicates that
nodes A, B and C are all active. The data are consistent with multiple
structures, but here we focus on two: a fully connected graph, and a
causal chain where A sends an arrow to B and B sends an arrow to C
(graphs 64 and 10 in Fig. D.1 in Appendix D). Both structures are
consistent with the data, and as a result the broken link model considers
them to be equally probable. In contrast, the BSL recognizes that the
data are not typical of the chain, and therefore assigns higher prob-
ability to the fully connected structure. Explaining the data in terms of
the chain requires the assumption that A spontaneously activated 6
times in succession, which seems like a big coincidence. The BSL re-
cognizes that the connected structure provides a better explanation,
because in this case all nodes end up active regardless of which node
activates first.

3.1. Allowing for non-sparse root causes and probabilistic links

Thus far we have described how the BSL and broken link models can
be applied to the problem of learning an unknown network drawn from
class DS, where causal links are deterministic and there is only one root
cause. Both models, however, can also be applied when causal links are
probabilistic and root causes are non-sparse, as occurs for classes DN,
PS, and PN. We now discuss how the likelihood terms are adjusted for
these classes.

Suppose that the unknown network G is known to belong to class
DN. This class differs from class DS in that two or more root causes may
simultaneously occur (cf. Table 1). The graded and binary likelihoods in
Egs. (2) and (3) are now adjusted to allow for start states with more
than one active node. The prior P(s;) on start states used by the graded
likelihood is formulated in terms of a background-rate parameter b that
captures the probability that any given node will be spontaneously
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active in the start state. The prior over start states is therefore

be(1=b)""% ifa > 0

Plg) e {o ifa=0 )

where a denotes the number of active nodes in 5; and n denotes the total
number of nodes. Consistent with our assumption that a start state must
include at least one active node, the prior assigns zero probability to the
state in which all nodes are inactive.

Suppose now that the unknown network G is known to belong to
class PS. This class differs from class DS in that causal links might be
inactive and fail to transmit activation. The graded and binary like-
lihoods in Egs. (2) and (3) must be adjusted again to allow for the
possibility of inactive links. For each graph G, we consider all possible
variants G, produced by inactivating zero or more of the links in G. For
example, Fig. 2c shows a variant of the underlying five node-network in
which the links A — C and B — C are inactive. The graded likelihood
now incorporates a sum over all possible variants G, of graph G:

GV .}

(5)

The prior P(G,|G) on graph variants is formulated using a failure rate f,
which captures the probability that any given link will be inactive. The
prior P(G,|G) is therefore

P(GIG) = A (6)

where [ denotes the number of links in G and i the number of inactive
links in G,.

An alternative way to derive the likelihood P(d;|G) is to work with
functional causal models. Fig. 4 shows a functional causal model that
corresponds to the activation network shown in Fig. 2. Exogenous
variables have been introduced to capture the factors that determine
whether a link is active on a given trial. For example, Upp is a binary
variable that determines whether or not the link from B to D is active.
The functional model also includes exogenous binary variables such as
Up that determine whether a node (in this case, D) is active in the start
state. For class PS, the base rates of the five variables U, through Uy
should be set to a very small value to capture the idea that the start state
almost certainly includes at most one active node. For class PN, the base
rates can be set to a value such as 0.5. After introducing the full set of
exogenous variables, each node in the activation network can be re-
presented as a deterministic function of its parents. For example, Fig. 4b
shows that node D is active if Up is true (meaning that D is active in the
start state) or if Ug and Upp are both true (meaning that B is active and
the link from B to D is active). Given a functional model such as Fig. 4,
the likelihood P (d;|G) is computed in the standard way by summing out
over all possible settings of the exogenous variables. Summing out over
the variables U, through Uy is equivalent to summing out over start
states 5; in Eq. (5), and summing out over the variables Uyp through Upp
is equivalent to summing out over graph variants G,.

P(diIG) =), [ZP(dile, sj)P(sj)]P(leG)

3.2. Relative difficulty of the four classes of networks

We suggested earlier that structure learning might be especially
easy when reasoning about deterministic systems with sparse root
causes (i.e. systems from class DS). One way to arrive at this conclusion
is to consider the number of causal histories for a network: that is, the
number of distinct ways in which the network can generate observa-
tions. Our experiments focus on networks with three nodes, each of
which may have up to 6 edges. There are 64 networks and the full space
is shown in Fig. D.1. This hypothesis space of networks is the same for
the four different classes, but the classes differ with respect to the
number of causal histories for a given network.

The causal history set for a network (i.e. the set of all causal histories)
can be constructed by pairing every possible start state s with every
possible graph variant G,. For example, consider a three-node network
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(b)
Up B Usp D =fp(Up, B, Ugsp)
0 0 0 0
0 0 1 0
0 1 0 0
0 1 1 1
1 0 0 1
1 0 1 1
1 1 0 1
1 1 1 1

Fig. 4. A functional causal model that represents the PS network in Fig. 2¢. (a) The network includes exogenous variables such as Up, which determines whether node
D is active in the start state, and Upp, which determines whether the link from B to D is active. Variables A through E have double boundaries, indicating that they are
deterministic functions of their parents. (b) The conditional probability distribution for node D in the functional causal model. Node D is active if variable Uj, is active

or if B and Upp are both active.

from class DS. The network has three possible start states, and a single
graph variant (the variant that includes no inactive links). As a result,
the causal history set for the network includes three possible histories.

More generally, consider a network with n nodes and [ links. If the
network has sparse root causes, then the number of start states is n. If
root causes are not sparse, then the number of start states is 2"—1. If the
network’s links are deterministic, then only one graph variant G, is
possible. If the network’s links are probabilistic, then 2! graph variants
are possible. Combining all possible start states with all possible graph
variants produces the causal history set, and Table 1 shows the size of
this set for each of the four network classes.

In general, networks with large causal history sets may be difficult
to reason about because there are many different ways in which ob-
servations can be generated over these networks. This expectation
supports predictions about the relative difficulty of structure learning
for the four network classes. For simplicity, assume that n and [ are
roughly the same. This assumption holds for the three node networks in
Fig. D.1, which have three links on average. Given this assumption, the
causal history counts in Table 1 predict that the difficulty order for the
four classes is

)

There are other ways to derive a difficulty order over the four
classes. For example, one could consider a Bayesian model such as the
BSL and assess how often the model correctly reconstructs the true
structure when given problems based on the four classes. Under some
assumptions, it seems possible that the relative difficulties of classes DN
and PS will be reversed. We expect, however, that all sensible deriva-
tions will agree that structure learning is easiest for class DS and most
difficult for class PN.

DS <DN < PS<PN

4. Overview of experiments

We designed a series of experiments in which participants learned
networks from the four classes in Table 1. Our primary goal was to
explore whether people would perform well at structure-learning when
reasoning about systems with deterministic causal links and systems
that satisfy the root sparsity condition. Previous research suggests that
people often perform poorly on structure-learning tasks given ob-
servational data alone (Steyvers et al., 2003; White, 2006), but we
suspected that participants might perform relatively well if they could
assume causal determinism and root-sparsity.

In all of our experiments, participants observed end states generated
over an unknown network, then drew a graph to indicate their in-
ferences about the structure of the network. Experiments 1 through 4

used networks belonging to classes DS, DN, PS and PN respectively. The
sequence of experiments therefore follows the difficulty order predicted
in Eq. (7). The instructions for each experiment informed participants
about the class of networks that they should consider. For example,
participants in Experiment 1 (class DS) were given reason to believe
that the unknown network had deterministic links, and that each ob-
served end state had a single root cause.

The results of Experiments 1 through 4 suggest that causal de-
terminism and root sparsity both enable successful structure learning
from observational data. Experiment 5 explored whether one of these
factors is more fundamental than the other. Participants were given
cases that could only be explained by abandoning either the de-
terminism assumption or the root sparsity assumption, and we asked
whether participants tended to agree about which assumption to
abandon and which to preserve.

A secondary goal of our experiments was to evaluate the BSL and to
compare it to the broken link model. These two models capture dif-
ferent theories about the assumptions that people bring to structure
learning, and comparing these models provides a way to characterize
the assumptions that people actually make. The instructions for each
experiment included examples of activations that allowed people to
estimate any relevant numerical parameters including the background
rate (Eq. (4)) and the failure rate (Eq. (6)). When implementing the
models, numerical parameters were set to maximum likelihood values
based on the introductory examples. No free parameters were in-
corporated at any stage, and the models can therefore be compared on
equal terms.

5. Experiment 1: Deterministic links, one root cause

Because structure learning given observational data alone is tradi-
tionally thought to be difficult, Experiment 1 explores the network class
(DS) that makes this problem as easy as possible. Our task is based on
activation networks with three nodes, and we included structure-
learning problems based on all such networks that are qualitatively
different. The space of these networks includes common-cause struc-
tures and common-effect structures, both of which have proved difficult
to learn in previous experiments (Steyvers et al., 2003; White, 2006).

Among these previous experiments, our experimental paradigm is
closest to the work of White (2006), who ran a structure-learning task
based on deterministic causal networks. White found that performance
was relatively poor, but this result may be due in part to the nature of
his experimental materials. In particular, White’s primary cover story
involved changes in the populations of animal species over time, and
this emphasis on temporal order may have made it difficult for people
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to solve the problem of structure learning. Our experiment asked people
to reason about networks of particle detectors, and we did our best to
introduce these networks and the structure-learning problem in a way
that was as intuitive as possible.

5.1. Method

5.1.1. Participants

36 members of the Carnegie Mellon University (CMU) community
participated in exchange for pay or course credit. In this and all fol-
lowing experiments, informed consent was obtained from each parti-
cipant.

5.1.2. Materials

The causal systems in this experiment were described as networks of
particle detectors. Particle detectors (i.e. nodes) were shown as rec-
tangles. The interior color of a detector indicated whether it was in-
active (gray) or active (green).3 Links between detectors (i.e. causal
relationships) were shown as black arrows.

In each block of the experiment, participants observed a set of end
states generated over an unknown network, and were asked to infer the
structure of the network. There were 32 blocks in total, and each in-
volved a network with three nodes. The blocks were systematically
constructed to cover the space of observations that can be generated
from three node networks in class DS. Here we describe the method for
generating blocks in a way that will generalize to subsequent experi-
ments.

We previously defined the causal history set as a set that includes all
ways in which observations can be generated over a given network. The
causal history set can be used to generate the characteristic observation
set for a network (or characteristic set for short), which includes one
observation corresponding to each possible causal history. Consider, for
example, the fully connected DS network (number 64 in Fig. D.1).
There are three possible causal histories for the network (either A, B or
C can be active in the start state), and each causal history leads to an
end state in which all nodes are active, which means that the char-
acteristic set for the network is {ABC, ABC, ABC}. As a second example,
the characteristic set for the empty DS network is {A, B, C}.

Each characteristic set induces a characteristic distribution over ob-
servations. For example, the characteristic distribution for the fully
connected DS network assigns probability 1 to the observation ABC.
The characteristic distribution for the empty DS network assigns
probability 1/3 to each element in {A, B, C}.

Different networks often have the same characteristic set, and
therefore the same characteristic distribution. For example, a DS net-
work that corresponds to a three-node cycle has the same characteristic
distribution as the fully-connected DS network mentioned above.
Different networks may also have characteristic distributions that are
not the same, but are identical up to relabeling of the nodes. For ex-
ample, the network with a single link from A — B and the network with
a single link from A — C generate characteristic distributions that are
not the same, but are identical up to relabeling. If we group char-
acteristic distributions into classes that are equivalent up to relabeling,
the 64 three node DS networks generate 9 qualitatively different
characteristic distributions.

These nine characteristic distributions were the basis for the blocks
in Experiment 1. 18 of these blocks represented the characteristic dis-
tributions using three observations each. These 18 blocks included two
instances of each of the 3-observation blocks shown in Table 2. An
additional 9 blocks represented the characteristic distributions using six

3 In Experiment 1 we actually used red to indicate active detectors, but later experi-
ments used green for consistency with the color scheme used to represent probabilistic
links. The color used to indicate node activations did not seem to influence our results,
and for simplicity the main text assumes that this color is always green. The actual color
used in each experiment is shown in Table B.2.
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observations each, and the remaining 5 blocks each included one or two
observations each and are listed in Table B.1.

A network is listed as a “generating structure” in Table 2 if its
characteristic distribution matches a given block. There are multiple
generating structures for some blocks. For example, there are several
qualitatively different structures that can only generate the observation
ABC (Block 9). When analyzing our data, we will treat the generating
structures in Table 2 as the “correct” responses for each block. It is
straightforward to show that the generating structures for a block are
precisely those that emerge as the most probable structures for that
block according to the BSL model.

5.1.3. Procedure

Participants interacted with a custom-built graphical interface that
presented them with end-states generated over a network with un-
known structure, and allowed them to record their inferences by
drawing causal links between the detectors in a network (see Fig. 5).
After an introduction to the experiment, the 32 blocks were presented
in random order, and each block included an observation phase and a
test phase.

5.1.3.1. Introduction. Participants were shown the five-node network in
Fig. 2 and told that the boxes were detectors that detect a rare type of
particle called the mu particle. The arrows were described as
connections between these detectors. Participants were told that an
active detector always activates all detectors that it points to. To
reinforce this information, participants were given an example like
Fig. 2a that showed a single detector activating and activation
propagating over the network in a series of steps. Once the network
had reached a stable end state, this state was added to an “observation
panel” on the left of the screen. The system was then reset—that is, all
detectors were set to inactive, but the links between detectors
remained.

Participants then observed two similar examples of activation
spreading over the network. The end states for both examples were
added to the observation panel, making a total of three observed states.

Next, participants were informed that during the experiment, the
arrows in the network would be hidden and that they would need to
figure out which arrows existed. The arrows were subsequently re-
moved from the network shown on screen, and the same three examples
were presented again. Importantly, only the end states were shown this
time, consistent with the blocks to follow.

5.1.3.2. Observation phase. The observation phase for each block began
with three detectors displayed on the right of the screen. The positions
of the detectors were randomized but the distance between detectors
was small, meaning that they formed a messy-looking pile. This design
choice was intended to reinforce the fact that the initial positions of the
detectors provided no information about the causal structure of the
network. At any time during the block, participants could drag the
detectors around with the mouse and arrange them as they liked on
screen.

Next, the first observation for the block was shown. To minimize
demands on memory, this observation was stored in the observation
panel, then all detectors were set to inactive and participants were told
that the network had been reset. The same procedure was used to
present all remaining observations for the block. The observations
within each block were presented in random order.

5.1.3.3. Test phase. After observing all observations in a block,
participants were asked to infer the structure of the network that
generated these observations. They provided their response by using
the mouse to draw arrows between boxes. If desired, they could also use
the mouse to delete arrows that they had previously drawn. Every
drawn arrow was simultaneously added to all observations in the
observation panel to make it easy for participants to see whether the
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Table 2
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Nine blocks of three observations used in Experiment 1. The “Generating structure” column shows networks
with characteristic distributions that correspond to each block. One representative is included for each class of

networks that are the same up to relabeling.

Frequency Generating structure
A B C AB AC BC ABC

Block 1 1 1 1 - - - -

Block 2 - 1 1 1 - - -

Block 3 - - 1 2 - - -

Block 4 1 1 - - - - 1

Block 5 - - 1 - 1 1

Block 6 - - 1 - - 1 1

Block 7 - - - 2 - - 1

Block 8 - - 1 - - - 2

Block 9 - - - - - - 3 F (A

Fig. 5. Experimental interface showing a

- presentation of Block 5 from Table 2. The

Please draw your best guess about the
underlying network.

structure they had drawn was consistent with all observations.

After providing their response, participants were asked to rate their
confidence in their answer on a scale from 1 to 7. Participants then
went on to the observation phase of the next block.

5.2. Results and discussion

We focus here on responses to the 3-observation blocks shown in
Table 2. Responses to the remaining blocks are summarized in Fig. D.2,
and are consistent with the conclusions that we derive from the nine
blocks in Table 2. Each block in Table 2 was presented twice, and all
analyses here incorporate data from both block presentations. For
simplicity, all analyses focus on the structures inferred by participants,
and we will not discuss their confidence ratings. Data from all experi-
ments are available online.*

Fig. 6 summarizes the overall results. Each scatter plot compares
human responses with the predictions of one of the four models. For

4 https://osf.io/rx8fa/.

observation panels at the top left show three
observations provided during the observation
phase. The learner is now asked to infer the
structure of the underlying network, and has
drawn a link from X to J that is duplicated in
all three observation panels. The generating
structure for this block includes a link from Z
to J in addition to the link drawn by the
learner.

Next

each of the nine blocks, we computed a human distribution over the 64
structures based on the frequency with which participants selected each
structure. For example, every participant chose the empty structure (i.e.
the structure without any links) for block 1, which means that the
human distribution for this block assigns probability 1 to this structure
and probability 0 to all remaining structures. The human distribution
for a given block can be compared with a model’s posterior distribution
over the 64 structures. Fig. 6 combines results for all nine blocks, and
each block contributes 64 data points to each scatter plot, one for each
structure. For example, block 1 contributes one point at (1,1) and 63
points at (0,0) to the first panel of Fig. 6, because the human dis-
tribution and the BSL model both assign probability 1 to the empty
structure.

Comparing the model posterior with data requires some linking
hypothesis about how individuals generate their responses. Comparing
the model posterior with the distribution across participants is con-
sistent with the hypothesis that participants respond by probability
matching, or sampling from the posterior. Another possible strategy is
maximizing, or choosing the structure with maximum posterior prob-
ability. Although maximizing is generally taken to be the normative
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Fig. 6. Comparison of the complete set of human responses with model pre-
dictions for Experiment 1. In each panel the first correlation is based on the
complete set of responses, and the correlation in parentheses shows the average
correlation across the individual blocks of the experiment.

strategy (Eberhardt & Danks, 2011), probability matching is widely
used in the literature, and provides a simple way to allow for variability
in responses across participants.

The most important conclusion that can be drawn from Fig. 6 is that
our participants succeeded at structure-learning given observational
data alone. As suggested earlier, the BSL assigns high probability only
to structures that could potentially be the true generating structure for a
given block.

A more fine-grained view of the data is provided by Fig. 7, which
includes the top responses for each block according to participants and
the BSL model. For example, for block 1, every participant selected the
empty structure, and the model assigned a posterior probability of 1 to
this structure. Correct responses (i.e. responses that match the gen-
erating structures in Table 2) are enclosed in solid blue frames. In every
block, the most common human response is correct. In particular, all
participants discovered the common effect structure in block 3 and the
common cause structure in block 6. Steyvers et al. (2003) found that
these structures are difficult for learners to distinguish in a probabilistic
setting, but our data suggest that they are easy to learn in our de-
terministic setting. Some blocks have multiple generating structures,
and in these cases the top two or three responses according to partici-
pants are all correct. Overall, Fig. 7 suggests that participants per-
formed well for each of the 9 blocks in Table 2.

The BSL and the broken link models are identical except for their
likelihood function, and Fig. 6 shows that the BSL model performs
better overall. In particular, the BSL model’s correlation with human
responses is .06 larger than that of the broken link model. To test
whether this difference is statistically significant we conducted a
bootstrap analysis where we sampled with replacement from the pool of
participants and re-calculated the correlation between the human re-
sponses in the bootstrap sample and the model predictions. Based on
10,000 samples, we estimated a 95% confidence interval (CI) around
the difference, using Efron’s bias-corrected and accelerated (BCa)
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approach. We used the identical bootstrap routine for all confidence
intervals throughout this paper.” For Experiment 1, the CI was
[0.05,0.06], which excludes zero and thus suggests that the BSL model
performed significantly better than the broken link model.

The main shortcoming of the binary likelihood is that it leads to
predictions that are too diffuse. The structure preferred by participants
is typically one of the most probable structures according to the broken
link model, but the model often assigns the same probability to many
other structures. For example, after observing ABC three times in suc-
cession, the broken link model assigns the same probability to all 51
structures that can generate the observation ABC, including causal
chains over these variables. In contrast, the BSL model assigns highest
probability to the 18 structures that can only generate the observation
ABC. These 18 structures correspond to all possible relabeling of the
generating structures shown in Table 2 for block 9.

Although the BSL model performs better than the broken model, its
predictions are still more diffuse than the human responses. As just
mentioned, the BSL model predicts that 18 different structures are
equally likely after observing ABC three times, but participants over-
whelmingly prefer the structures shown in Fig. 7. We return to this issue
later and show how can be addressed in part by augmenting the BSL
model with a prior distribution that captures a preference for symmetric
structures.

Taken overall the results of Experiment 1 support two general
conclusions. First, humans succeed at structure learning when causal
links are deterministic and when each observation has a single root
cause. To our knowledge, our data represent the first clear case of
successful causal structure learning from non-temporal observational
data. Our findings contrast with those of White (2006), who found that
deterministic causal systems are difficult for people to learn. We return
to this difference in the general discussion, and consider several factors
that might help to explain it.

A second general conclusion is that structure learning in our setting
cannot be adequately characterized as a search for a structure that is
consistent with the observed data. Instead, people seem to be sensitive
to whether a candidate structure makes the observable data not only
possible but probable. The BSL model illustrates how this tendency can
be captured by the likelihood of a Bayesian model, and suggests the
value of the Bayesian approach to structure learning.

Given that our participants succeeded at learning the structures
of networks from class DS, it is natural to ask whether determinism
and root sparsity are both essential in order to enable high levels of
performance. The next three experiments use the same basic setup
to explore cases in which at least one of these assumptions is re-
laxed.

6. Experiment 2: Deterministic links, multiple root causes

Experiment 2 relaxes the root sparsity assumption and explores how
well people learn networks from class DN. The difficulty order in Eq. (7)
predicts that structure learning should be more difficult for class DN
than for class DS, but we expected that people’s inferences about class
DN would still be relatively accurate.

6.1. Method

6.1.1. Participants
29 members of the CMU community participated in exchange for
course credit.

6.1.2. Materials
Experiment 2 used the same general scenario described in

S Additionally, we report corroborating model comparisons based on log-likelihood
values in Appendix C.
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Fig. 7. Model predictions and human judgments for Experiment 1. Five out of the full set of 64 structures are included in each plot, and these five structures always
include the two structures chosen most frequently by humans and the two most probable structures according to the model. Networks enclosed in solid blue boxes are
the generating structures from Table 2. Networks enclosed in dashed red boxes are invalid responses that cannot explain at least one observation in a given block.
Unboxed networks can account for each individual observation in a given block, but have characteristic distributions that do not match the distribution for the block.
Error bars show standard errors based on bootstrap simulations. (For interpretation of the references to color in this figure legend, the reader is referred to the web

version of this article.)

Experiment 1. The experiment included nine blocks that are shown in
Table 3. Each three-node network in class DN now has 7 possible start
states, which means that the characteristic set for each network in-
cludes 7 observations. The 64 three-node networks in class DN generate
9 characteristic distributions that are qualitatively different, and the
blocks in Table 3 correspond to these nine characteristic distributions.

275

6.1.3. Procedure

The procedure was very similar to Experiment 1 with one key dif-
ference. During the introduction, participants were told that a single
particle might directly activate one or more detectors. The three ex-
amples in the introduction included cases in which a single particle
activated one, two, and four detectors respectively.
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Generating structure

Table 3
9 Blocks used in Experiment 2.
Frequency
A B C

Block 1 1 1 1 1 1
Block 2 - 1 1 2 -
Block 3 - - 1 3 -
Block 4 1 1 - 1 -
Block 5 - - 1 - 2
Block 6 - - 1 - -
Block 7 - - - 3 -
Block 8 - - 1 - -
Block 9 - - - - -

1
1

AB AC BC ABC

1

2

3

4

2

4

4

6 A+ B’
A B A—B' A B A—-B’ ‘A—B
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6.2. Results and discussion

The graded likelihood function for networks from class DN includes
a background-rate parameter b. As suggested earlier, this parameter
was set to the maximum likelihood estimate based on the examples
participants observed in the introduction. In the introduction to
Experiment 2, participants observed start states in which 1 out of 5, 2
out of 5 and 4 out of 5 nodes were active, suggesting that the back-
ground rate should be close to % = 0.47. This computation is not strictly
correct because it does not acknowledge that start states must include at
least one active node, and the actual maximum-likelihood estimate is
b = 0.44. Additional details about the estimation procedure are

r=0.9 (0.83)
1.001
.
° L]
0.751 P
. .
g
€ 0.501 .
S [
T
L]
0.254 ee .
L
S e
wee o L]
0.00 {2=
000 025 050 075 1.00
BSL
r=0.66 (0.61)
1.001
M L]
0.751 o
. L]
C
®©
€ 0504 °
> [
T
L]
0.254e o
L]
e e [ L]
e » L]
000428 & ¢
0.00 025 050 075 1.00
Broken link

Fig. 8. Comparison of the complete set of human responses with model pre-
dictions for Experiment 2. In each panel the first correlation is based on the
complete set of responses, and the correlation in parentheses shows the average
correlation across the individual blocks of the experiment.

provided in Appendix B, but the key point for now is that both models
are fit without free parameters.

Fig. 8 summarizes the overall results. As for Experiment 1, the BSL
accounts for the data relatively well, which indicates that people per-
formed well at the task.

Results for the 9 individual blocks are shown in Fig. 9. As for Ex-
periment 1, in every block the most common human response is correct.
In particular, participants again reliably discovered the common effect
structure in block 3 and the common cause structure in block 7. For
blocks with multiple generating structures, the top few responses are
often correct, but block 7 includes some cases in which a generating
structure is less popular than a non-generating structure. These cases
reveal some minor ways in which humans fall short of perfect perfor-
mance on the task, but Fig. 9 suggests that the overall level of perfor-
mance was high for each of the 9 blocks.

As for Experiment 1, comparing the BSL with the broken link model
suggests that the graded likelihood plays an important role. As for
Experiment 1, we ran a bootstrap analysis of the difference between the
main correlations in Fig. 8. The difference of 0.24 between BSL and
broken link is statistically significant, as the 95% confidence interval
does not include zero, CI = [0.19,0.28].

Allowing multiple root causes increases the number of structures
that are consistent with a given data set, which means that the pre-
dictions of the broken link model become more diffuse. For example,
the empty structure allows any observation to be explained by treating
all active nodes as independent root causes, which means that the
empty structure is now consistent with every block. For blocks 2
through 9, the broken link model cannot assign a probability to the
generating structure that exceeds the probability assigned to the empty
structure, which means that the generating structure can receive a
probability of at most 0.5.

Comparing Experiments 1 and 2 suggests that causal determinism
alone is sufficient to enable successful structure learning in our para-
digm. It is therefore possible that root sparsity did not substantially
contribute to our results for Experiment 1, but also possible that root
sparsity is a second factor that is sufficient to enable successful structure
learning. To adjudicate between these possibilities Experiment 3 ex-
plores structure learning when root sparsity holds but determinism does
not.

7. Experiment 3: Probabilistic links, one root cause

Experiment 3 is directly analogous to Experiment 1 except that
the determinism assumption is relaxed. Instead of assuming that
activation always propagates along causal links, participants were
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Fig. 9. Model predictions and human judgments for Experiment 2.

told that links in the underlying network were sometimes inactive
and thus could fail to transmit activation. As for Experiment 1,
participants were led to believe that root sparsity applied, which
meant that at most one detector would spontaneously activate on any
trial. The difficulty order in Eq. (7) predicts that structure learning is
more difficult for class PS than for either class DS or DN, but it is still
possible that the root-sparsity assumption alone will allow people to
perform relatively well.
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7.1. Method

7.1.1. Participants
29 members of the CMU community participated in exchange for
course credit.

7.1.2. Materials

Experiment 3 used the same general scenario described in
Experiment 1. In the instruction phase, active links between detectors
were shown as green arrows and inactive links were shown as red
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Table 4
12 Blocks used in Experiment 3.
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Frequency Generating structure
A B C AB AC BC ABC

Block 1 4 4 4 - - - - "
Block 2 2 4 4 2 - - - A'C'B
Block 3 2 2 4 4 - - - Aes
Block 4 4 4 1 - 1 1 1

Block 5 2 2 4 - 2 2 -

Block 6 2 2 4 1 - 2 1 A'C}B
Block 7 2 2 2 4 - 1 1
Block 8 2 1 4 2 - 1 2
Block 9 1 1 4 1 1 1 3 Ax.'c'.(B
Block 10 2 2 1 - 2 2 3
Block 11 2 2 2 1 1 1 3 A}\'C'.(B
Block 12 1 1 1 1 1 1 6 ‘}s.'c'.rB

arrows. Arrows drawn by participants were always black.

The experiment included 12 blocks that are shown in Table 4. Each
three-node network in class PS has 3 possible start states and up to 64
graph variants, where the number of graph variants depends on the
number of edges in the graph. Computing characteristic distributions for
all networks produces 16 qualitatively different distributions, but some of
these distributions cannot be represented using fewer than 12 observa-
tions. Table 4 includes all 12 distributions that can be represented using 12
or fewer observations. Some of these distributions can be represented
using fewer than 12 observations—for example, the characteristic dis-
tribution corresponding to block 1 can be represented using three ob-
servations (one copy each of A, B and C). For consistency across the ex-
periment, however, we used 12 observations for each block.

7.1.3. Procedure
The procedure was very similar to Experiment 1 except as noted
below.

7.1.3.1. Introduction. During the introduction, participants were told
that links between detectors could be active or inactive. Participants
were told that every time a network was reset, the status of each link
(active or inactive) was randomly determined. In the five introductory
examples, active links were shown in green and inactive links were
shown in red. No explicit information was provided about the
probability of a link being active on a given trial, but the
introductory examples were consistent with a base rate of 0.5 (13
active links out of 25).

7.1.3.2. Observation phase. During the observation phase of each block,
participants were allowed to drag and sort observations in the
observation panel. The blocks in Experiment 3 included more
observations than the blocks in our previous experiments, and often
included observations that were repeated several times. We hoped that
allowing participants to sort the observations might make it easier for
them to process each block.

7.1.3.3. Test phase. As for previous experiments, participants provided
their responses by drawing black arrows between detectors. The
instructions asked participants to report all links that existed
regardless of whether they were active (green) or inactive (red) for a
given observation.
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Fig. 10. Comparison of the complete set of human responses with model pre-
dictions for Experiment 3. In each panel the first correlation is based on the
complete set of responses, and the correlation in parentheses shows the average
correlation across the individual blocks of the experiment.

7.2. Results and discussion

The graded likelihood function for networks from class PS includes a
failure rate parameter f. This parameter was set to f= 0.48 using
maximum likelihood estimation based on the five introductory ex-
amples, each of which showed 2 or 3 out of 5 links as active and the
other links as inactive (see Appendix B for details).
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Fig. 11. Model predictions and human judgments for Experiment 3.

of the 12 blocks, the most common human responses include at least
the BSL captures the data relatively closely, which indicates that people one generating structure. In block 7, however, the most common re-
performed well at the task. sponse is not the generating structure. The generating structure is the

Results for the 12 individual blocks are shown in Fig. 11. For 11 out second most popular response for this block, and differs from the most

Fig. 10 summarizes the overall results. As for Experiments 1 and 2,
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common response only with respect to the direction of the arrow be-
tween B and C. Even so, block 7 reveals a discrepancy between human
reasoning and Bayesian inference that is greater than any discrepancy
observed in Experiments 1 and 2. Overall, however, Fig. 11 suggests
that the level of human performance was high for nearly all of the 12
blocks.

As for Experiments 1 and 2, comparing the BSL model with the
broken link model suggests that the graded likelihood plays an im-
portant role. As before, a bootstrap analysis indicated that the differ-
ence in correlations between the two models shown in Fig. 10 was
statistically significant, CI = [0.70,0.79].

Allowing probabilistic links dramatically increases the number of
structures consistent with a given data set. For example, the fully
connected structure is now consistent with every block, because ap-
propriate patterns of edge failure allow this structure to account for
every possible observation. As a result, the predictions of the broken
link model become very diffuse, and the model cannot account for cases
in which people are relatively confident about the true underlying
structure.

Comparing Experiments 1 and 3 suggests that root sparsity alone is
sufficient to enable successful structure learning in our paradigm. We
can therefore conclude that root sparsity and determinism both enable
successful structure learning. Performance when both assumptions hold
is especially good (Experiment 1), but either assumption in isolation
allows people to perform relatively well (Experiments 2 and 3). We now
consider the final class of networks in Table 1, and explore structure-
learning when neither assumption holds.

8. Experiment 4: Probabilistic links, multiple root causes

In three separate experiments we have found that people succeed at
structure learning, and this finding contrasts with previous structure-
learning studies that report relatively low levels of performance. These
previous studies typically consider networks with probabilistic links
and do not assume root sparsity. Experiment 4 follows suit and asks
whether our experimental paradigm also leads to poor performance in
the absence of determinism and root sparsity.

8.1. Method

8.1.1. Participants
55 members of the CMU community participated in exchange for
course credit.

8.1.2. Materials

Experiment 4 used the same general scenario described in previous
experiments.

In Experiments 1 and 2, the blocks were systematically constructed
to include characteristic distributions that correspond to all possible
three node networks. Using the same approach for Experiment 4 would
produce 16 blocks, each of which includes 56 observations. An ex-
periment using these blocks would be impractical, and we therefore
simplified these 16 blocks in two ways.

First, given our expectation that learning the structure of PN net-
works would be difficult, we chose characteristic distributions corre-
sponding to the 8 structures that seemed simplest and therefore easiest
to learn. These structures are shown in Table 5, and include all struc-
tures with up to two directed links, and all structures for which all links
are bi-directional.

Second, we approximated 5 of the 8 characteristic distributions
rather than representing them exactly. Blocks 4-8 include between 12
and 14 observations each, and each block approximates a distribution
that requires 28 observations to represent in full. We constructed these
approximations in a way that aimed to maximize the statistical dis-
tinctions between blocks. The three remaining characteristic distribu-
tions (blocks 1-3) can each be represented using 14 observations each,
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which means that no approximation was required.

Of all four network classes considered in this paper, class PN comes
closest to the class considered by most previous studies of structure
learning. Even so, the notion of Markov equivalence does not apply to
Experiment 4. For example, the network represented by Block 2 of
Table 5 can be distinguished from a network with a single link from B to
A even though the two networks are Markov equivalent. The networks
have different characteristic distributions because causes are assumed
to be generative, which means that nodes that receive links will be
active more often than nodes that receive no links. For example, the
distribution in Block 2 indicates that A will be active on 8 out of 12
trials, and B will be active on 10 out of 12 trials.

8.1.3. Procedure

The procedure merged elements from Experiments 2 and 3. As for
Experiment 2, participants were told that a single particle might di-
rectly activate one or more detectors. As for Experiment 3, participants
were told that links between detectors could be active or inactive. The
introduction included three introductory examples that supported these
instructions. The observation and test phases for each block used the
same procedure described for Experiment 3.

8.2. Results and discussion

As for experiments 2 and 3, the background-rate parameter b and
the failure-rate parameter f were set using maximum-likelihood esti-
mation based on the three introductory examples.

Fig. 12 summarizes the overall results. The correlation achieved by
the BSL is substantially lower than for previous experiments
(CI = [0.39,0.55], CI = [0.32,0.52], CI = [0.29,0.53], for the differ-
ence between the BSL correlation for Experiment 4 and the BSL cor-
relations for Experiments 1, 2, and 3, respectively), suggesting that
participants performed relatively poorly on the task. Fig. 13 shows re-
sults for the eight individual blocks, and reveals that participants often
failed to recover the generating structure for each block.

Given the difficulty of the structure-learning task, it is important to
consider whether the statistical evidence was sufficient to identify the
generating structure for each block. For all of the 8 blocks, Fig. 13
confirms that the generating structure is indeed the structure with
maximum posterior probability according to the BSL model. In some
blocks, however, the difference in posterior probability between the
generating structure and alternatives is arguably small enough that it
may be unreasonable to expect participants to distinguish between
these structures.

Although the task was intrinsically difficult, Fig. 13 nevertheless
reveals some clear departures between human responses and Bayesian
inference. Block 5 provides the clearest example. The model predictions
for this block indicate that the available observations provided clear
statistical support for the common effect structure ahead of the empty
structure, but even so the common effect structure was chosen rela-
tively rarely by participants. Overall, then, our data for Experiment 4
suggest that participants fell short of the benchmark provided by
Bayesian inference.

As for previous experiments, the BSL model performs better than the
broken link model. The binary likelihood no longer makes any con-
tribution, because every structure is consistent with every possible
observation if probabilistic links and multiple root causes are allowed.
As a result the broken link model is completely unable to distinguish
between structures.

Now that we have considered all four network classes in Table 1, we
can conclude that determinism and root sparsity both enable successful
structure learning, but that performance is relatively poor if neither
assumption applies. Our final experiment asks whether one of these two
assumptions is more fundamental than the other.
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Table 5
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8 Blocks used in Experiment 4. Asterisks indicate cases in which a block corresponds approximately but not
exactly to the characteristic distribution of the generating structure.

Generating structure

AB AC BC ABC

2 A B

NN W W = =N DN
© O~ R A R s W

Frequency
A B C
Block 1 2 2 2 2 2
Block 2 1 2 2 3 1
Block 3 1 1 2 4 1
Block 4 2 2 - 2 1
Block 5 1 1 2 - 3
Block 6 1 1 2 1
Block 7 1 1 - - 2
Block 8 - - - 1 1
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Fig. 12. Comparison of the complete set of human responses with model pre-
dictions for Experiment 4. In each panel the first correlation is based on the
complete set of responses, and the correlation in parentheses shows the average
correlation across the individual blocks of the experiment.

9. Experiment 5: Mostly deterministic links, mostly one root cause

Our results demonstrate that people are able to reason successfully
about networks that violate the root sparsity assumption (Experiment
2) and networks that violate the determinism assumption (Experiment
3). Neither assumption is essential for structure learning to succeed, but
it is possible that one assumption is psychologically privileged with
respect to the other. Experiment 5 explored this possibility using a task
that required participants to abandon either root sparsity or de-
terminism, but not both. If one of these assumptions is privileged, than
this privileged assumption should be preserved whenever possible, even
at the cost of abandoning the other.

The idea of pitting determinism against root sparsity is related to the

work of Mayrhofer and Waldmann (2016) on prior expectations in
structure learning. Mayrhofer and Waldmann consider a structure-
learning problem with two focal variables, one of which is the cause of
the other. They describe two priors that could be used to infer the di-
rection of the causal relationship. A sufficiency prior captures the idea
that the causal relationship is very strong, and is related to the as-
sumption of determinism that we have discussed throughout. A necessity
prior captures the idea that the cause is necessary for the effect to occur,
and is related to our notion of root sparsity.® Mayrhofer and Waldmann
point out that these priors allow people to distinguish between Markov-
equivalent structures, and consider a set of cases in which the two
priors make different predictions. They find that some participants
consistently match the predictions of the sufficiency prior, and that
others consistently match the predictions of the necessity prior. Across
three experiments, however, they find that participants match the suf-
ficiency prior more closely than the necessity prior, suggesting that
sufficiency may be psychologically more important than necessity. The
results of Mayrhofer and Waldmann are consistent with a broader lit-
erature that suggests that people give more weight to sufficiency than
necessity (Goldvarg & Johnson-Laird, 2001; Mandel & Lehman, 1998).
Translating these findings into our terminology suggests that de-
terminism may be psychologically more important than root sparsity.

One additional consideration suggests that determinism may be
privileged with respect to root sparsity. Determinism appears to have
received more attention than root sparsity in the psychological litera-
ture, suggesting that determinism may be the more fundamental con-
cept. However, violating determinism (Experiment 3) did not seem to
reduce people’s level of performance more than did violating root
sparsity (Experiment 2). The 95% confidence interval for the difference
in correlations achieved by the BSL model across these two experiments
is CI = [-0.07, 0.08], suggesting that the performance of the BSL model
is comparable in both cases. As a result we had no strong expectation
about the outcome of Experiment 5.

9.1. Method

9.1.1. Participants
24 members of the CMU community participated in exchange for
course credit.

9.1.2. Materials
Experiment 5 used the same general scenario described in previous

© Mayrhofer and Waldmann assume that causes act independently, and in the absence
of interactions a necessary cause must be the only cause of an effect.
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Fig. 13. Model predictions and human judgments for Experiment 4.

Table 6

10 Blocks of 3-4 observations used in Experiment 5. “Determinism” explanations can account for a block if links are always
active and an additional root cause is invoked for one observation (all blocks except 5) or for two observations (block 5). “Root
sparsity” explanations can account for a block if root causes are always sparse and an inactive link is invoked for one ob-

servation.
Frequency Generating structure
A B C AB AC BC ABC Determinism Root-sparsity
Block 1 1 1 1 - - 1 -
Block 2 - 11 - 1 - As.'c'.(B
Block 3 -1 1 1 - 1 -
Block 4 - - 1 1 - 1
Block 5 - - 1 1 - 1 1
Block 6 - 1 1 1 - - 1
Block 7 - -1 1 - - 1 . A;(;B
Block 8 11 - 1 - - 1
Block 9 - - - - 1 1 1 As.c @C.(B
Block 10 - -1 - 1 1 1
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Table 7
5 Filler blocks of 3 observations used in Experiment 5. Each filler block was
presented twice.

Frequency
A B C AB BC AC ABC
Block 1 1 1 1 - - - -
Block 2 1 1 - - - 1 -
Block 3 1 1 - - - - 1
Block 4 1 - - 1 1 - -
Block 5 1 - - 1 - - 1

experiments, but the method used to construct blocks differed from that
used in previous experiments. We considered only blocks that included
at most one instance of each observation. Among these blocks, we used
the 10 cases shown in Table 6 that are best explained by invoking either
a minimal violation of determinism or a minimal violation of root
sparsity.

To identify these 10 blocks, we first enumerated all blocks that in-
clude at most one instance of each observation. The shortest such block
includes only one observation (e.g. {A}), and the longest includes seven
({A, B, C, AB, AC, BC, ABC}). We identified blocks that were equivalent
up to relabeling, and retained a single representative of each equiva-
lence class.

We then removed all blocks that could be generated over a DS
network—in other words, all blocks that were consistent with both
determinism and root sparsity. Of the blocks that remained, we selected
those that could be explained by invoking either a single link failure or
a single case in which two root causes were present. Table 6 includes
explanations for each block that satisfy this condition.

Including only the 10 blocks used in Table 6 would mean that
participants would need to invoke either a link failure or an extra root
cause in every block, which would undermine the idea that violations of
determinism and sparsity are rare. We therefore added 10 filler blocks
that can be explained without invoking link failures or extra root
causes. These blocks are shown in Table 7.

9.1.3. Procedure

The procedure was very similar to Experiment 4, except that link
failures and extra root causes were described as possible but rare. The
first introductory example was a case with a single root cause and no
inactive links. The second example included a single link failure.
Participants were told that “normally all connections are active after
the network is reset”, but “on rare occasions all connections but one are
active after the network is reset.” The third example included one extra
root cause. Participants were told that “normally a particle directly
activates only one of the detectors,” but “on rare occasions a particle
simultaneously activates two of the detectors.” The presentation order
of examples 2 and 3 was counterbalanced between participants.

100 A

# Graphs drawn
3 o
1 1

N
(6]
1

Invalid

Determinism  Root sparsity

Fig. 14. Number of responses to Experiment 5 that preserved determinism,
preserved root-sparsity, or were invalid. Counts are based on all blocks except
block 5.
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Fig. 15. Experiment 5 data summarized by blocks.

9.2. Results and discussion

Our analyses focus on the 10 critical blocks in Table 6, and the filler
blocks will not be discussed. Fig. 14 summarizes how often participants
preserved determinism and root sparsity when responding to the cri-
tical blocks. Responses are classified as determinism and root-sparsity
responses based on whether they match the “determinism” and “root-
sparsity” explanations in Table 6. Responses that do not match these
explanations are classified as invalid, because they fail to provide
parsimonious explanations of the data. Fig. 14 shows that determinism
and root sparsity are preserved about equally often. If anything there is
a slight preference for preserving root-sparsity rather than determinism.

Fig. 15 summarizes the responses for the ten individual blocks.
Because block 5 is the only block that requires at least two violations of
root-sparsity if determinism is preserved, it is perhaps not surprising
that responses to this block tended to preserve root-sparsity rather than
determinism. To enable a fair comparison, we therefore excluded block
5 when computing the summary results in Fig. 14. Block 7 produced a
similar pattern of results (note that the observations for these blocks are
very similar), but responses to the remaining blocks were not extremely
skewed in favor of one assumption or the other.

At the population level, Figs. 14 and 15 suggest that neither de-
terminism nor root sparsity is strongly privileged. Fig. 16 summarizes
the responses for individual participants. We find that some partici-
pants consistently preserved determinism, others consistently preserved
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Fig. 16. Individual-level results for Experiment 5. Participants are ordered
based on how consistently they preserve determinism. Counts are based on all
blocks except block 5.
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Fig. 17. Comparison of the complete set of human responses with model pre-
dictions for Experiment 5. In each panel the first correlation is based on the
complete set of responses, and the correlation in parentheses shows the average
correlation across the individual blocks of the experiment.

root-sparsity, but that there are also participants who preserved de-
terminism on some trials and root-sparsity on others. This mixed pat-
tern of responses is consistent with the individual differences reported
by Mayrhofer and Waldmann (2016). Our data are therefore consistent
with the view that some individuals view one assumption as more
fundamental than the other, but also suggest that a substantial number
of individuals show no such preference.

Taken together, the analyses in Figs. 14-16 provide little support for
the hypothesis that determinism is privileged with respect to root-
sparsity, or vice versa. It remains possible that one assumption is psy-
chologically privileged, but that Experiment 5 was not sensitive enough
to detect this difference. For example, the experimental instructions
explicitly suggested that both determinism and root-sparsity could be
violated on rare occasions, and perhaps these instructions overrode any
natural bias that people have in favor of one assumption or the other. If
such a bias exists, however, our results suggest that it must be fairly
weak.

The primary result of Experiment 5 is summarized by Fig. 14, but
for completeness our data are compared with model predictions in
Fig. 17. The BSL provides a relatively good account of the data,
suggesting that people succeed at structure learning even in cases in
which violations of determinism and root-sparsity are both possible.
The BSL model also accounts significantly better for the data than the
broken link model, CI = [0.58,0.65]. Results for individual blocks
are shown in Fig. 18. For every block, the most common human re-
sponse is among the best responses according to the BSL, suggesting
that the model provides a relatively good account of the data for each
individual block.

Experiments 4 and 5 are similar in that both allow for violations of
determinism and violations of root-sparsity. These violations, however,
are common in Experiment 4 but rare in Experiment 5. Comparing our
data for the two experiments suggests that people perform relatively
well at structure learning when violations of the two core principles are
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rare, but relatively poorly when violations of both principles are
common.

10. Overall model comparison

Now that we have presented results from five separate experiments,
we consider how well the BSL and the broken link models account for
the complete set of data. The two models appear in the first two col-
umns of Fig. 19, and the remaining columns are for alternative models
that will be discussed in subsequent sections. The final row of Fig. 19
shows aggregate plots that summarize the performance of a given
model across all five experiments. These aggregate results provide ad-
ditional support for the conclusion that the BSL model performs better
than the broken link model. The BSL model achieves a correlation of
0.89 across the complete set of data while the broken link model
achieves a correlation of 0.64, and the difference is significant in a
bootstrap analysis, CI = [0.22,0.29]. Corroborating results based on
log-likelihood values are reported in Appendix C.

11. Alternative models

Although the BSL model accounts well for many aspects of our data,
at least two important questions remain to be addressed. The first
concerns the role of the prior. We have relied on a uniform prior so far,
but perhaps changing this prior would produce a Bayesian model that
better captures people’s inferences.

The second question asks how well the BSL model performs re-
lative to non-Bayesian approaches that could be tried. Researchers
have developed many formal accounts of causal learning from con-
tingency data (Cheng, 1997; White, 2002), including models that
focus on associative learning (Shanks & Dickinson, 1987), necessary
and sufficient conditions (Mackie, 1965), and propositional rea-
soning (Boddez, Houwer, & Beckers, 2017). Most of these models
focus on parameter learning, or learning the strength of the re-
lationship between a candidate cause and an effect. These parameter-
learning models, however, can be extended in order to handle
structure-learning problems, and we will discuss the prospects of
developing a successful model along these lines.

11.1. Bayesian models with alternative priors

The prior distribution P(G) in Eq. (1) can capture tendencies that
are not based on the data but that nevertheless lead people to prefer one
graph over another. For example, people may have a tendency to prefer
graphs that seem simple. Measures of graph simplicity have been de-
veloped by scientists from multiple fields (Mowshowitz & Dehmer,
2012), including computer science, biology, and chemistry, but there is
little evidence to suggest which of these measures might have greatest
psychological relevance. Here we consider two possible ways to for-
malize the notion of simplicity.

The first approach is to define the simplicity of a graph as a
function of the number of edges that it contains. By this measure the
empty graph is the simplest graph, and the fully connected graph is
the most complex. Previous Bayesian approaches to structure
learning sometimes use a simplicity measure of this kind to define a
prior that favors graphs with few links (Dawid & Lauritzen, 1993;
Jones et al., 2005). Fig. 21 shows a “few links” prior that sets the
prior probability of a graph as inversely proportional to the number
of links that it contains. The prior is defined over all 64 graphs with
three nodes, but many of these graphs are equivalent up to relabeling
of the nodes. Fig. 21 includes one representative from each of the 16
equivalence classes induced by node relabeling. Fig. 19 includes
results for a “few links” model that combines the few links prior with
the same likelihood function used by the BSL. The two models per-
form similarly, and the few links model does not emerge as superior
to the BSL, CI = [—-0.01,0.01].
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Fig. 18. Model predictions and human judgments for Experiment 5.

A second way to define the simplicity of a graph starts with the idea
that simple graphs have many symmetries (Rashevsky, 1955). The
symmetry score of a graph can be formally defined as the number of
node permutations that leave the structure of the graph unchanged.
There are six possible permutations of three nodes, including the
“identity permutation” that maps each node to itself. The graph with no
edges and the fully connected graph share the highest possible sym-
metry scores, because all six node permutations leave the structure of
these graphs unchanged. The existence of the identity permutation
means that the smallest possible symmetry score is 1. Fig. 21 includes a
symmetry prior defined as

P(G) x s(G), ®)

where 5(G) is the symmetry score of graph G.”
Fig. 21 includes results for a symmetry model that combines the

7 Alternative ways to define a symmetry prior are possible. For example, Rashevsky
proposes a symmetry-based measure of graph simplicity that leads to a prior that is dif-
ferent from the symmetry prior in Eq. (8). The two priors are closely related, but Eq. (8) is
conceptually simpler than a prior based on Rashevsky’s measure, which is defined using
the notion of group orbits. For the hypothesis space of all 3-node structures, the corre-
lation between the two priors is 0.92.
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Fig. 19. Correlation plots for all models. The last row shows data collapsed across experiments.

symmetry prior with the same graded likelihood function used by the
BSL. The symmetry model performs slightly better than the BSL overall,
CI = [0.02,0.04]. The differences between the models are most ap-
parent when comparing average within-block correlations (e.g. 0.97 vs
0.87 for Experiment 1). These average correlations reveal that there are
some blocks for which the symmetry model performs substantially
better than the BSL. One example is Block 9 in Experiment 1 (see
Fig. 7). After observing ABC three times in succession, the BSL assigns
highest probability to the 18 structures that can only generate the ob-
servation ABC. These 18 structures correspond to all possible relabel-
ings of the generating structures shown in Table 2 for block 9. Among
these 18 structures, Fig. 7 shows that people overwhelmingly prefer the
three graphs with highest symmetry scores: the fully connected graph
and the two cycles. Other blocks that reveal a preference for symmetric
structures include blocks 7 and 8 in Experiment 1, blocks 7, 8 and 9 in
Experiment 2, block 12 in Experiment 3. Fig. 20 includes four of these
blocks and shows in each case that the symmetry model accounts for
human judgments better than the BSL.

Although the symmetry prior accounts well for our data, it is pos-
sible that this prior captures people’s preferences only roughly. For
example, perhaps people have an a priori preference for the empty
graph and the fully connected graph, which happen to be the two
graphs with highest prior probability according to the symmetry prior.
The symmetry prior, however, makes additional distinctions between
structures: for example, it assigns higher prior probability to common
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cause and common effect structures than to structures that include a
single directed edge. It is possible that fine-grained distinctions like
these are not reflected in people’s judgments.

To address this possibility, we implemented a version of the
Bayesian model for which the prior is fit to our data. Each prior dis-
tribution in Fig. 21 is characterized by 16 weights, one for each
equivalence class of structures (groups of structures that are identical
up to relabeling), and we allowed these weights to vary freely subject to
the constraint that the resulting prior corresponded to a probability
distribution over the hypothesis space of 64 graphs. The best-fitting
weights are shown in Figs. 21, and 19 shows the performance of a
model that combines this fitted prior with a graded likelihood.

The fitted prior in Fig. 21 does not correspond exactly to the sym-
metry prior. Note, for example, that the priors disagree with respect to
the relative probabilities of the empty graph and the cycle. Most of the
distinctions made by the symmetry prior, however, are also reflected in
the fitted prior. For example, the symmetry prior distinguishes between
six structures with a symmetry score of 2 (including common cause and
common effect structures) and six structures with a symmetry score of 1
(including the structure with a single link), and this distinction is
broadly consistent with the fitted prior.

Additional support for the symmetry prior is provided by Fig. 19.
Comparing the columns for the symmetry and fitted prior models shows
that replacing the symmetry prior with the fitted prior improves model
performance by a small margin only, CI = [0.00,0.02]. Overall, then,
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Fig. 20. Selected blocks in which the symmetry model captures qualitative distinctions that are missed by the BSL.

we can conclude that the distinctions captured by the symmetry prior
are broadly consistent with our data, and that any additional distinc-
tions made by people account for only relatively minor aspects of our
data.

Our results for alternative priors suggests that the symmetry model
is qualitatively superior to the BSL as a descriptive account of structure
learning. The success of the symmetry model calls for further study of
the reasons why the symmetry prior improves on the uniform prior used
by the BSL. One possibility is that people believe that symmetric
structures are more common than asymmetric structures, but other
explanations are possible. Consider, for example, the three most
common responses to block 7 in Experiment 1. Participants might un-
derstand that all three structures are equally compatible with the data,
but feel that it is arbitrary to say that C sends a link to A but not B, or
vice versa. Choosing the most symmetric among these three structures
could be a way to signal that the observations provide no basis for
breaking the symmetry between nodes A and B. Other response stra-
tegies are possible—for example, in cases where multiple structures are
equally compatible with the data, participants might tend to choose the
most symmetric structure simply because they have an aesthetic pre-
ference for symmetry. To us it seems likely that participants’ responses
reflect both prior beliefs about which structures are most probable and
a range of different response strategies. From this perspective the
symmetry prior makes accurate predictions about how people break ties
between structures that are equally compatible with the data, but does
not reveal the response strategies that are actually used to break these
ties.

11.2. Process models of structure learning

Like many Bayesian models, the symmetry model predicts how
people respond to a task but does not characterize the psychological

processes that actually generate their responses. It is therefore im-
portant to consider how the computations specified by the model could
be implemented or approximated by psychological mechanisms.

One path towards a process model is to build on existing models of
parameter learning such as the Rescorla-Wagner model. These models
use contingency data to compute the strength of the relationship be-
tween a candidate cause and an effect. Because the candidate cause and
the effect must be specified in advance, these models do not directly
address the problem of structure learning. They can be extended in this
direction, however, by carrying out parameter learning for each pos-
sible pair of variables, and assuming that all pairwise relationships
greater than some threshold correspond to edges in a causal structure.

A pairwise approach should be able to successfully learn many of
the structures used in our experiments, including the common effect
structure that generated the data in Fig. 5. Combining pairwise in-
ferences, however, is not enough to account for all aspects of our data.
In Block 9 of Experiment 1, observations are generated over a fully
connected graph, and any pairwise approach will assign the same
strength to each pair of nodes. A pairwise model can therefore explain
why the fully connected graph is the most common response to this
block, but cannot explain why people prefer some subsets of this graph
to others. For example, around half of the time participants chose one of
the two 3-edge cycles, and a pairwise approach cannot explain why
these cycles are chosen more often than other structures with three
edges.

Although we suggest that no pairwise approach can provide a
complete account of our data, we implemented one such approach in
order to compare its performance with our Bayesian models. Because
this model relies on local computations (Fernbach & Sloman, 2009;
Waldmann, Cheng, Hagmayer, & Blaisdell, 2008; Wellen & Danks,
2012) we refer to it as the “local structure learner”, or the LSL for short.

Throughout the learning process, the LSL maintains a weight for
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Fig. 21. Four possible priors over graphs.

each pair of nodes. Large positive weights indicate directed pairs that
probably correspond to causal links, and large negative weights in-
dicate directed pairs that probably do not correspond to links. For a
problem involving three nodes, there are six weights in total, and each
weight initially begins at zero. Suppose that the LSL now observes a
state in which A and B are active but C is inactive. This observation
supports the idea that there is a link from A — B, and the corresponding
weight is updated by adding p. The weight for B— A is also in-
cremented by the same amount. The same observation suggests that
links A — C and B — C do not exist, and as a result both corresponding
weights are decremented by subtracting n. The two remaining weights
(corresponding to the links C — A and C — B) are left unchanged. The
two parameters p and n both lie between 0 and 1, and we stipulate that
n + p = 1. As a result, the weight update process relies on a single free
parameter.

After all observations have been made, each weight is used to decide
whether or not the corresponding causal link exists. Each weight w is
transformed into a choice probability using the function (1 + e™*")7,
where the slope s is a second free parameter. These choice probabilities
are then used to decide whether or not each edge exists. For example, a
link that ends up with a weight of zero produces a choice probability of
0.5, and therefore has probability 0.5 of appearing in the final structure
chosen by the model.

Fernbach and Sloman (2009) suggest that human causal learning is
both structurally and temporally local, and the LSL is local in both
senses. The model is structurally local because it relies on computations
that are carried out separately for each pair of nodes. The model is
temporally local because it does not require all observations to be
stored for subsequent batch processing. Instead, each observation can
be forgotten after it is used to update the current set of weights.

To give the LSL the best possible chance of performing well, we fit
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Table 8
LSL parameters that maximize the correlation between model predictions
and human responses to each experiment.

Experiment p s
1 0.11 14.2
2 0.06 8.2
3 0.53 37.6
4 0.00 15.3
5 0.26 4.1

the free parameters p and s to each experiment separately, and the re-
sulting parameter values are shown in Table 8. It is natural to think that
people might focus more on positive evidence (i.e. evidence for the
existence of a link) than negative evidence (i.e. evidence that a link
does not exist). If the positive evidence parameter p is set to 1, then the
LSL reduces to a model that considers only positive evidence. This
special case of the LSL, however, performs poorly, and when the p
parameter is allowed to vary freely, Table 8 shows that the best-fitting
parameter values tend to assign greater weight to negative evidence
than positive evidence.®

Fig. 19 summarizes the performance of the LSL. Compared to the
symmetry model, the LSL performs slightly worse for Experiments 1 and
5, and slightly better for Experiment 2. For Experiments 3 and 4,
however, the LSL performs substantially worse than the symmetry
model, and these experiments mean that the aggregate performance of
the LSL (r = 0.76) is worse than both the symmetry model (r = 0.92),
CI = [0.13,0.19], and the BSL model (r = 0.89), CI = [0.10,0.17].
There is therefore a significant difference in favor of the probabilistic
models even though the LSL has two free parameters per experiment
and the symmetry and BSL models both have none.

For Experiment 3, the LSL ends up with a very large slope para-
meter, which means that it assigns non-negligible probability to only a
single structure per block. The model therefore does not capture the
graded nature of people’s responses that is evident in blocks 2, 5, and 6
of Fig. 11. An additional qualitative failure of the LSL emerges directly
from the local nature of the model. The LSL makes essentially the same
inference about blocks 11 and 12, and assigns very high probability to
the fully-connected structure in both cases. People, however, tend to
choose the two 3-edge cycles in block 11. Between them, the two cycles
include all 6 possible edges, and considering each edge in isolation
means that the LSL will either accept all of them, none of them, or some
random subset of them depending on the value of the slope parameter.
Regardless of how the model parameters are set, the model has no way
of preferring structures with certain holistic properties — for example,
structures in which the edges are arranged into a cycle.

For Experiment 4, the LSL makes essentially the same inference for
every block, and assigns very high probability to the empty structure
and negligible probability to the remaining structures. In contrast,
Fig. 19 suggests that the symmetry model is able to capture some of the
distinctions that people make in Experiment 4.

Despite the qualitative problems just identified, the model achieves
a number of successes. For example, even though Experiment 3 exposes
some problems with the model, the best response according to the LSL
is the most common (or equal most common) human response for 10
out of the 12 blocks in this experiment. There may be ways to adjust the
LSL to allow it to perform even better. Even so, the analyses in this
section tend to suggest that the symmetry model captures aspects of
people’s inferences that go beyond simple local computations.

The LSL is an especially simple model, and other structure learning
models that emphasize local computation may provide a better account
of our data. Bramley, Dayan, Griffiths, and Lagnado (2017) describe an
online structure learning algorithm that maintains a single candidate

8 See Table C.1 for model parameters that maximize the likelihood of the data.
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structure at any stage and updates it by adjusting one edge at a time.
Like the LSL, this incremental approach seems unlikely to capture
people’s preferences for structures with holistic properties such as
symmetry. In principle, however, it should be possible to develop
process models that do take symmetry into account.

One possible approach is to develop a hybrid approach that com-
bines the LSL (or the approach of Bramley et al. (2017)) with the
symmetry model. For example, the LSL could be used to generate a
handful of candidate structures for a given problem, and these candi-
dates could be subsequently evaluated using the symmetry model to
identify the candidate with maximum posterior probability. A hybrid
approach along these lines could help to explain how the computations
required by the symmetry model are implemented (or approximated) in
a way that is psychologically plausible.

12. Discussion

We presented five experiments that explore structure learning from
observational data. Our studies focused specifically on two assump-
tions: determinism and root sparsity. We found that both assumptions
enabled successful structure learning (Experiments 1 through 3). If
violations of both assumptions are common then performance is rela-
tively poor (Experiment 4), but performance remains high if violations
are possible but rare (Experiment 5).

The most pressing question raised by our results is why people
performed relatively well in our experiments but relatively poorly in
previous structure-learning experiments. We have touched on this
question already but now take it up in some detail, and discuss previous
work on learning both deterministic and probabilistic causal structures.

12.1. Learning deterministic structures

As mentioned earlier, our first experiment is closely related to
White’s work on learning the structure of deterministic causal systems
(White, 2006). In most of White’s experiments, the unobserved causal
structure is a food web in which the nodes represent animal species and
the edges represent predator-prey relationships. Participants were told
about changes in the populations of the species. For example, one ob-
servation might specify that only the population of species B changed
during a given season. A second might specify that the populations of
species A and B both changed during another season. These two ob-
servations can be summarized using the observation set {B, AB}, and
this set suggests the existence of a causal link between A and B (com-
pare with our opening example in Fig. 1).

In contrast to our results, White found that participants were mostly
unable to recover the correct structure for a given set of observations.
Performance remained poor even when White gave his participants
explicit instructions about how to infer the underlying causal structure.
White’s studies were specifically designed to explore cases in which
temporal information and co-occurrence information provide com-
peting cues to causal structure, and it is therefore not surprising that we
were able to find conditions under which performance exceeds the le-
vels reported by White. Even so, it is useful to consider some of the
specific factors that may contribute to the difference between the two
sets of results.

First, assumptions about background causes are critical for solving
both White’s task and ours, but these assumptions may not have been
clear to White’s participants. For example, White’s first experiment
included two structure-learning problems, and the observation set for
one of these problems was {A, B, C, D, ABCDE}. If the underlying
network is a DS network, then the network must include exactly four
links, one from E to each of the other species. White, however, did not
appear to communicate the assumption of root-sparsity to his partici-
pants, or the related assumption that background causes are rare. If
there is no particular reason to think that background causes are rare,
then observation ABCDE can be explained by invoking five separate
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root causes, and the set of five observations does not provide strong
support for the “correct” causal structure that White had in mind.
Unlike White, we explicitly conveyed the notion of root-sparsity to our
participants. For example, the introduction to our first experiment in-
cluded three examples that were designed in part to illustrate this no-
tion.

A second characteristic of White’s experiments is that his materials
seem unintuitive in several respects. One issue is that the directionality
of causal links in a food web is somewhat ambiguous. White’s partici-
pants were supposed to think that links were directed from predator
species to prey species, but it seems just as natural to think that changes
in prey populations can cause changes in predator populations.

A third issue is that White deliberately described observations such
as {A, B, C, D, ABCDE} as observations that were gathered in five
successive seasons. White reports that many of his participants were
sensitive to the temporal order of the observations, and focusing on
temporal information may have prevented them from approaching the
problem using the normative method that White outlines. In our ex-
periments, we made it clear that the networks were “reset” between
observations, eliminating any temporal interpretations.

There are other differences between White’s experiments and our
own that might partially explain the difference between our respective
findings. White focused on two causal structures, each of which had 5
nodes, but our experiments focused on structures with 3 nodes each. In
comparing his work with previous work by Gopnik, Sobel, Shulz, and
Glymour (2001), White suggests that 3-node problems may be small
enough for people to compute normative solutions, but that for larger
problems computing normative solutions “imposes too great a demand
on working memory, or is for some other reason too difficult to ac-
complish” (p. 476). We suspect, however, that White’s 5-node problems
can be readily solved in the context of our particle-detector paradigm.
Some preliminary support for this claim is provided by a post-test given
to our Experiment 1 participants after the experiment proper had
ended. The post-test included two structure-learning problems based on
the same 5-node structures and observation sets used by White, and we
found that participants were reliably able to recover the correct struc-
tures (see Deverett & Kemp (2012) for additional details). This post-test
does not provide strong evidence that our materials are more intuitive
than White’s, because the difference between experimental materials is
confounded with a difference in whether or not the 5-node problems
followed a test involving 3-node problems. The post-test does demon-
strate, however, that there are conditions under which people are
capable of learning the 5-node structures used by White.

12.2. Learning probabilistic structures

Although White considered deterministic causal systems, other re-
cent psychological work on structure learning has focused on prob-
abilistic causal systems. The standard finding is that systems with
probabilistic links are difficult to learn. We found that root-sparsity
allowed participants to infer the structure of probabilistic systems
(Experiment 3), but that probabilistic systems were difficult to learn in
the absence of root-sparsity (Experiment 4). The primary question
raised by our data is how our positive results for Experiment 3 can be
reconciled with previous negative results for probabilistic systems. We
focus in particular on the previous work of Steyvers et al. (2003) and
Lagnado and Sloman (2004).

Steyvers et al. (2003) asked participants to learn the structure of 3-
node networks. Nodes in each network corresponded to aliens, and
links between nodes represented cases in which an alien was able to
read another alien’s mind. The values of the nodes represented words in
the aliens’ minds, and each node was categorical with a large number of
possible values. In their first experiment, Steyvers et al. (2003) focused
on learning from observational data, and made the task especially
simple by giving participants a forced choice between two possible
structures—a common effect structure and a common-cause structure.
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Even so, performance on the task was relatively poor, and around half
of the in-lab participants (other participants completed the task over
the web) performed at chance.

Unlike the systems used in Experiment 3, the alien mind-reading
networks did not satisfy the assumption of root-sparsity. For example,
on a typical trial, aliens A and C might both be thinking the word POR
and alien B might be thinking the word TUS. If A is reading C’s mind (or
vice versa), then a single root cause can explain the data for A and C,
but an additional root cause is needed to explain why B is thinking TUS
instead of one of many other possible words. Based on our results, we
predict that performance on the alien task would improve if the para-
digm were adjusted to satisfy the assumption of root-sparsity. For ex-
ample, if the aliens are allowed to have empty minds, then each ob-
servation could involve a single word that is present in the minds of one
or more aliens. The resulting task would be closely related to our task in
Experiment 3, and we expect that participants would find it relatively
straightforward.

Lagnado and Sloman (2004) carried out a second set of structure-
learning experiments that focus on 3-node networks. Their cover stories
were based on two realistic scenarios: for example, in the chemist
scenario the true causal structure was a chain in which acid level (low
or high) influenced ester level (low or high), which in turn influenced
whether or not perfume was produced. Both causal links in the chain
were probabilistic with a causal strength of 0.8. In their first experi-
ment, Lagnado and Sloman asked participants to infer which of 5 causal
structures generated a set of observations. Performance was poor, and
only 14% of participants selected the correct structure.

Unlike the alien mind-reading networks used by Steyvers et al., the
causal chain used by Lagnado and Sloman did satisfy the assumption of
root sparsity. In fact, this causal chain allowed only one possible root
cause—the initial node in the chain—because there were no back-
ground causes that could activate the second or third node if the first
variable in the chain was inactive. The causal chain task is therefore
directly related to our third experiment, which asked people to learn
the structure of probabilistic networks from class PS. Our data for block
5 of this experiment show that our participants were able to reliably
reconstruct a probabilistic causal chain over three variables, which
contrasts with the result of Lagnado and Sloman.

One possible explanation for the difference is that our participants
were given information about the functional forms of the causal re-
lationships in the underlying network, but Lagnado and Sloman’s par-
ticipants were given no such information. Expectations about functional
form appear to be critical for generating the correct response to
Lagnado and Sloman’s causal chain task. In terms of our notation, the
observations available for this task correspond to a distribution over the
set {ABC, AB, A}. Different assumptions about functional form lead to
different inferences about the underlying structure. If links are prob-
abilistic but only the root variable in a causal structure can be spon-
taneously active, then the data support the correct solution according to
Lagnado and Sloman (i.e. a chain with links from A to B and B to C). If
links are deterministic and spontaneous activations are possible for all
nodes, then the data support a causal chain in the opposite direction
(i.e. with links from C to B and from B to A). In block 5 of Experiment 1,
most of our participants made exactly this inference, and did so in part
because they knew that the underlying network belonged to class DS.

We have highlighted one way in which our setup differs from the
Steyvers et al. mind-reading task, and a second way in which it differs
from the Lagnado and Sloman causal chain task. Other differences be-
tween these tasks, however, deserve some attention. There is an im-
portant respect in which our task was more difficult than both previous
tasks. We asked participants to draw a graph over three nodes, which
effectively requires them to choose one among 64 possible structures.
The two previous studies were much more constrained, and required
participants to choose either one among two structures (Experiment 1
of Steyvers et al.) or one among five structures (Experiment 1 of
Lagnado and Sloman). From this perspective, the high level of
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performance observed across our experiments is all the more striking.

There are other respects, however, in which our task was easier than
both previous tasks. We minimized demands on memory by leaving all
observations on screen at the time when participants made their in-
ferences, but Steyvers et al. and Lagnado and Sloman both presented at
most one observation at a time. We did not include empty observations
(i.e. observations for which all detectors were inactive), but Lagnado
and Sloman did, and half of the 50 observations that they showed fell
into this category. The frequency of empty observations is informative
about base rates but uninformative about causal structure, and drop-
ping these observations may have helped our participants to focus on
the information that is most relevant to structure learning. Finally, we
believe that our “activation detector” scenario is more intuitive than the
scenarios used by both previous studies. One issue with the mind-
reading task is that the direction of causal links clashes with intuitions
about causal agency (Mayrhofer & Waldmann, 2015). For example, if A
is reading B’s mind, A is the active partner and therefore naturally
viewed as the cause of the interaction between the two, but the link in
the causal network over these nodes is directed from B to A. One con-
cern with the causal-chain task is that both real-world scenarios used by
Lagnado and Sloman may have led to the expectation that the under-
lying structure should be a common effect structure rather than a chain.

We have now identified several possible factors that help to explain
why people performed better in our experiments than in previous stu-
dies of structure-learning. There may be other relevant factors, and
additional experiments are needed to determine which differences be-
tween the paradigms in question are truly critical. We hope, however,
that the differences singled out in this section help to make the dis-
crepancy between our results and previous results less puzzling than it
may initially seem.

12.3. Bayesian vs constraint-based approaches to structure learning

Computer scientists have developed two prominent approaches to
structure-learning: the constraint-based approach (Pearl, 2000; Spirtes
et al., 2001) and the Bayesian approach (Friedman & Koller, 2002;
Heckerman, Meek, & Cooper, 1999). The constraint-based approach
runs standard statistical tests to identify dependence or independence
relationships between subsets of variables, and uses the outcomes of
these tests to infer the underlying causal structure. The Bayesian ap-
proach incorporates a likelihood function that captures how the data
were generated over an underlying causal structure, and computes a
posterior distribution that combines this likelihood function with a
prior over structures.

Both of these approaches have influenced psychological work on
structure learning (Gopnik et al., 2004; Steyvers et al., 2003), but our
work is more consistent with the Bayesian approach than the con-
straint-based approach. The BSL and symmetry models are instances of
the Bayesian approach, and demonstrate that this approach accounts
well for our data. The symmetry model incorporates a graded likelihood
term and a symmetry-based prior, and we found support for both
components of the model. The likelihood term is consistent with the
finding that people tend to prefer structures that make the observed
data not only possible but likely. For some blocks in our experiments,
there were multiple structures that maximized the likelihood term, and
among these maximum likelihood structures we found that people
tended to prefer those that were symmetric. This result supports the
Bayesian view that people bring prior expectations to structure
learning.

There are several reasons to believe that a constraint-based ap-
proach would account less well for our data. First, some of our ex-
periments used very small observation sets—for example, each block in
Experiment 1 included three observations only. Constraint-based ap-
proaches rely on standard statistical tests, and these tests are not ap-
propriate when the number of available observations is small. Second,
constraint-based approaches do not naturally incorporate the kinds of
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prior beliefs that people appeared to bring to our task. These beliefs
include expectations about causal structure, such as the expectation
that symmetric structures are more likely than asymmetric structures.
They also include expectations about functional form, such as the ex-
pectation in Experiment 1 that causal links were deterministic and that
root causes were relatively rare.

In literature influenced by the constraint-based approach, it is
common to find discussions of Markov equivalence classes, and the idea
that networks from the same Markov equivalence class cannot be dis-
tinguished using statistical data. For example, the common-cause
structure with links from A to B and A to C belongs to the same
equivalence class as the chain with links from B to A and A to C, and
these two structures are indistinguishable in the absence of expecta-
tions about functional form. In Experiment 1, however, we found that
people readily distinguish between common-cause and chain structures
(blocks 4 and 5), and the reason is that they were able to exploit ex-
pectations about functional form. Expectations about determinism and
root sparsity place especially strong constraints on structure learning,
but many other kinds of expectations are enough to render Markov
equivalence irrelevant. For example, even the weak expectation that
causes tend to be generative rather than preventive is enough to allow
Markov equivalent networks to be distinguished. The notion of Markov
equivalence is important in settings where prior knowledge is minimal,
but we believe that human structure learning typically requires prior
expectations of various kinds, and that Markov equivalence rarely poses
a problem in everyday learning settings.

12.4. Human and model performance across the four network classes

Our experiments were organized around four classes of causal net-
works and our main result is that people performed well when rea-
soning about networks from classes DS, DN, and PS. This result con-
trasts with previous work which tends to suggest that people are
relatively poor at structure learning.

Beyond the basic result that people sometimes succeed at structure
learning, our data support comparisons across the four classes of net-
works. As suggested earlier, probabilistic non-sparse systems (PN) are
intrinsically more complex than the other kinds of systems, and it is
therefore not surprising that PN emerges as the most difficult class in
our experiments. A more revealing finding is that all of the models
match human judgments better for class DS than for class PN. A com-
plete theory of human structure learning should produce excellent
model fits across all of our experiments, including experiments where
people are near-normative (Experiment 1) and experiments where they
are not (Experiment 4). None of our models meets this goal, and future
work should aim to develop a single theory that accounts well for
human inferences across a wide variety of network classes.

12.5. From Bayesian networks to functional causal models

Causal structure learning is often formulated as the problem of
learning a causal Bayesian network, and this approach has been pro-
ductive. An alternative, however, is to formulate structure learning as
the problem of learning a functional causal model. Fig. 4 illustrates how
the activation networks considered in this paper can be represented as
functional causal models. The key step is to introduce exogenous
variables (such as U, and Uy in Fig. 4) so that each of the original
variables is a deterministic function of its parents.

An important advantage of working with functional causal models is
that these models can accommodate feedback loops and other kinds of
causal cycles. Our experiments considered activation networks that can
include cycles, and these networks are better captured by functional
models than by causal Bayesian networks. Pearl (2000) offers some
additional reasons why functional causal models should be preferred to
Bayesian networks: for example, functional models better support in-
ferences about counterfactuals (Lucas & Kemp, 2015) and actual
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causation (Halpern & Hitchcock, 2010).

Because functional models are more general than Bayesian net-
works, learning a functional model should be more difficult than
learning a Bayesian network if generic priors are used in both cases. As
suggested earlier, however, generic priors rarely seem appropriate for
the learning problems that people face. In addition to exploring how
people respond to generic structure learning problems, an important
research direction is to explore how people learn functional causal
models given different kinds of prior beliefs. Several kinds of prior
beliefs are relevant to the work in this paper, including beliefs about
generative causes, disjunctive causal combinations, determinism, and
sparsity. Future work can explore structure learning in settings that
draw on other kinds of prior beliefs, including settings in which causes
may be preventive and in which conjunctive causal interactions are
expected.

12.6. Other cues to causal structure

Because previous studies often found that structure learning is dif-
ficult given observational data alone, there has been considerable in-
terest in other kinds of information that facilitate structure learning. In
particular, multiple researchers have found that temporal information
(Lagnado & Sloman, 2004; Rottman & Keil, 2012) and the ability to
perform interventions (Lagnado & Sloman, 2004; Steyvers et al., 2003)
both lead to improved performance.

Our result that observational data can be sufficient for structure
learning provides a basis for future studies that explore how observa-
tional data relates to other sources of structural information. Previous
studies have typically explored this question using tasks in which
people fail at structure learning given observational data alone. Our
paradigm could be adapted to explore different cues to structure in a
setting in which observational data alone enables reliable inferences.
For example, future studies could explore how heavily observational
data is weighted relative to other sources of information, and how
people resolve conflicts when there are multiple incompatible cues to
causal structure.

12.7. Determinism and root sparsity

Our work focused on the implications of determinism and root
sparsity for causal structure learning, but these factors are also relevant
to other aspects of causal reasoning. For example, determinism suggests
that people tend to generate explanations of an event that make the
event seem inevitable, and root sparsity suggests that people often in-
voke a single root cause when explaining an event. Beyond causal
reasoning, determinism and root sparsity are also relevant to other
aspects of cognition, such as categorization. For example, determinism
suggests that categories have crisp definitions that support un-
ambiguous judgments about category membership, and root sparsity is
consistent with the view that all of the properties of a category stem
from a single underlying essence.

Previous work brings out the relevance of determinism, root sparsity
or both to causal explanation (Chi et al., 2012; Lombrozo, 2007; Zemla
et al, 2017), categorization (Gelman, 2003), decision-making
(Gaissmaier & Schooler, 2008), and social attribution (Heider, 1958).
Our work is consistent with the general themes emerging from many of
these studies, but suggests a different perspective on determinism and
root sparsity than is typically presented. Determinism and root sparsity
are often viewed as cognitive biases that lead to faulty inferences and
suboptimal decisions. In contrast, our results suggest that determinism
and root sparsity can facilitate inferences (such as discovering the
causal structure of a system) that would otherwise be difficult or im-
possible. Future work should consider how broadly this favorable view
of determinism and root sparsity is likely to extend. A starting point is
to consider cases in which these expectations are consistent with the
structure of the environment, and therefore likely to be helpful rather
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than harmful. For example, root sparsity may be especially relevant Griffiths, 2010), and the same basic approach may be able to learn
when observing events in continuous time, because it is extremely which assumptions about determinism and root sparsity are appropriate
unlikely that two or more unrelated causes would trigger at the same for a given class of problems.
instant. Determinism may be helpful when reasoning about systems
with hidden causal variables, because aspiring towards a deterministic 13. Conclusion
explanation may lead people to discover latent variables that would
otherwise have been overlooked (Schulz & Sommerville, 2006). Previous studies often report that structure learning from observa-
Although determinism is sometimes consistent with the structure of tional data is difficult. In contrast, our results suggest that people find
the environment, people seem to act as if this assumption applies more structure learning relatively easy if causes are deterministic or if each
broadly than it actually does. For example, after an unexpected event observation has a single root cause. There may be additional factors
occurs, people often show “creeping determinism” and report that it that enable successful structure learning, and our work may lead to
was predictable all along (Fischhoff, 1975). Similarly, the literature on future efforts that comprehensively chart the conditions under which
probability matching suggests that participants often attempt to find people perform well at structure learning from observational data.
deterministic patterns in sequences that are generated by random Comparing our results with previous results suggests the need for
processes (Gaissmaier & Schooler, 2008). There is also some evidence psychological models that can explain why people perform well on
that people tend to rely on root sparsity more than they should. For some structure-learning tasks but poorly on others. We found that a
example, Lombrozo (2007) found that participants preferred to explain Bayesian approach accounted well for our data, and exploring psy-
an outcome by invoking a single root cause, even when a two-cause chologically-plausible implementations of this approach may ultimately
explanation was actually more probable. On the other hand, Zemla lead to a model that captures both people’s successes and their failures
et al. (2017) found that participants rated explanations with more root at structure learning tasks.
causes as more plausible than explanations with fewer root causes.
An important direction for future work is to characterize and ex- Declarations of interest
plain the different expectations about determinism and root sparsity
that people bring to different learning problems. For example, Yeung None.
and Griffiths (2015) suggest that expectations about determinism are
stronger for physical systems than for social systems. Similarly, Johnson Acknowledgments
et al. (2017) suggest that root sparsity is more likely to be assumed
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approach. Hierarchical Bayesian models of causal learning have pre- rationality” (SPP 1516). CK was supported in part by the James S.
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Appendix A. Supplementary material

The data for Experiments 1-5 can be found at https://osf.io/rx8fa/.
Appendix B. Parameter settings

For each experiment, model parameters b (see Eq. (4)) and f (see Eq. (6)) were set to maximum likelihood estimates based on the observations
shown in the instructions (Table B.2). Importantly, these parameters were based on observations that were shown to participants, not on data that
were collected from participants. Consequently, these parameter values were fixed throughout the data analysis and not treated as free parameters.

The estimate of f is equal to the relative frequency of broken links in the observations. For example, for Experiment 4 the estimate is f = 0.48
because 12 of 25 links were broken. As mentioned in the text, the estimate of b must allow for the fact that each observed pattern of activation is the
result of at least one root cause. For example, for Experiment 4 the estimate is b = 0.44, which maximizes the joint probability of the three
observations with 1, 2, and 4 root causes respectively:

(G (@) (o
& 1amey 1| —ampe || 1-aoby

Table B.3 shows all parameter values. As intended, these estimates were close to either 0 or 0.5 for the first four experiments. For completeness,
Table B.3 also lists the number of root causes and broken links, which are relevant for the binary likelihood of the broken link model. These numbers
come directly from the observations shown in the instructions (see Table B.2).
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Table B.1
Five blocks with 1 or 2 observations and nine blocks with 6 observations used in Experiment 1.

Frequency

A B C AB AC BC ABC

Block 1 1 - -
Block 2 - - -
Block 3 - - -
Block 4 - -
Block 5 - -
Block 6 2 2
Block 7 - 2
Block 8 - -
Block 9 2 2
Block 10 - -
Block 11 - -
Block 12 - -
Block 13 - -
Block 14 - - - - - -
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Table B.2

Frequencies and colors of observations presented during the instruction phase. Experiment 1 used red to indicate active detectors. Experiment 2 used red for some
participants and green for others, and no difference in response patterns was found between these groups. Experiments 3-5 used green for active detectors to match
the color used for active links.

Active links Initially active detectors Link color Detector color
(root causes) (active/inactive) (active/inactive)

Experiment 1 5 out of 5 1 out of 5 Black/- Red/gray

5 out of 5 1 out of 5 Black/- Red/gray

5 out of 5 1 out of 5 Black/— Red/gray
Experiment 2 5 out of 5 1 out of 5 Black/- Red/gray — green/gray

5 out of 5 2 out of 5 Black/— Red/gray — green/gray

5 out of 5 3 out of 5 Black/- Red/gray — green/gray
Experiment 3 3 out of 5 - Green/red Green/gray

2 out of 5 - Green/red Green/gray

3 out of 5 1 out of 5 Green/red Green/gray

3outof 5 1 out of 5 Green/red Green/gray

2 out of 5 1 out of 5 Green/red Green/gray
Experiment 4 3 out of 5 - Green/red Green/gray

2 out of 5 - Green/red Green/gray

3 out of 5 1 out of 5 Green/red Green/gray

3 out of 5 2 out of 5 Green/red Green/gray

2 out of 5 3 out of 5 Green/red Green/gray
Experiment 5 5 out of 5 1 out of 5 Green/red Green/gray

4 out of 5 1 out of 5 Green/red Green/gray

5 out of 5 2 out of 5 Green/red Green/gray

Note. Experiment 3 and 4 began with two “dry” examples that did not show active detectors yet and only introduced the idea of active and inactive links.

Table B.3
Parameter settings for the graded and binary likelihoods. The parameters for the binary likelihood represent the maximum number of root causes and broken links
allowed for each experiment.

Graded likelihood Binary likelihood
b f # Root causes # Broken links
Experiment 1 0.000001 0 1 0
Experiment 2 0.44 0 3 0
Experiment 3 0.000001 0.48 1 6
Experiment 4 0.44 0.48 3 6
Experiment 5 0.14 0.07 2 1

Appendix C. Model comparison using log-likelihoods

The model comparisons in the main text rely on correlations. To check whether the resulting conclusions about the relative performance of the
models are robust, we carried out a second set of comparisons using log-likelihood as the evaluation measure. For increased rigor, we used the log-
likelihoods of out-of-sample predictions. As for the analysis in Fig. 18, we evaluated the models separately for each experiment.

The log likelihood of model M for a given experiment is
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Table C.1
LSL parameters that maximize log likelihood for each experiment.
Experiment P s
1 0.13 4.86
2 0.07 2.73
3 0.46 0.84
4 0.28 0.32
5 0.26 2.54
Exp1 Exp2
Fitted ] 0000000000000 000000000000
Symmetry - I 000000000000
BSL 1 I - 0000000000000
Fewlinks - . |
Broken link 4
LSL 1
-750 -500 -250 0 —600 -400 -200 0
Exp3 Exp4
Fitted | 00000000000 0000000000000
Symmetry I 0000000000000
BSL 1 000000000000 0000000000000
Fewlinks - | .
Broken link 4
LSL 1
-1000 -500 0 -1500 -1000 -500 0
Exp5
Fita] I
Symmetry ]
oS- -
Fowiinks: I
Broken link 1
LSL 1
-750 -500 -250 0
log-likelihood

Fig. C.1. Model performances based on log-likelihoods. Larger log-likelihoods (i.e. likelihoods closer to 0) indicate better predictions about participants’ behavior. All
predictions were out-of-sample predictions. The broken link and the LSL model were outperformed by the other models, supporting the findings based on correlations reported
in the main text. For visual guidance, the models are ordered by their performance in Experiment 1 and the two process models (broken link and LSL) are colored in gray.

I I B
logP*(DIM) = " logP*(d;IM) = Y. " P*(dy|M)
i=1 b=1

i=1

(Cn

where D is the full set of responses for the experiment, I is the number of participants, d; is the full set of responses of participant i, B is the number of
blocks in the experiment, and d;; is the response of participant i for block b.

Because some of the models assign zero probability to some responses, we supplement each model with a guessing parameter 6 for every
participant. We assume that response d;, is made randomly with probability 6;, and is drawn from the model’s posterior with probability 1—6;:

P*(dpIM, 6;) « (1-6))P(dy!M) + 6;P(d;y|Mp) (C.2)

where P(-) is the original model posterior that does not allow for guessing, P*(-) is the posterior that allows for guessing, and model M, assigns
uniform probability to all structures, p(d;,|M,) = é. For simplicity, we use a uniform prior on 6; and integrate over all values:

PyIM) = [ P(dyIM, 6)p(6)de, €3

For each participant i, we approximated the integral using a discrete grid on 6; with step size of 0.05.
Out-of-sample predictions provide a sensible comparison of models with different numbers of free parameters. For each participant, we fitted the
models with free parameters to the remaining participants (optimizing for likelihood instead of correlation) and then computed for every model the

N
O
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log-likelihood of the data from this held-out participant.

The two models with free parameters were the model with the fitted prior (15 free parameters rather than 16 because the 16 weights plotted in
Fig. 21 must sum to 1) and the LSL, which has two free parameters. The parameters of both models were fit to maximize the likelihood in Eq. (C.1).
To keep the fitting procedure tractable we did not integrate over a guessing parameter but maximized the log-likelihood based on the original model
posterior (i.e. we maximized logP instead of logP*). To evaluate the impact of maximizing for log-likelihood instead of correlation, we fitted the prior
for the fitted model based on all participant data. This new fitted prior was almost identical to the prior shown in Fig. 21, and the correlation between
the two was greater than 0.999. The parameters of the LSL that maximize the log-likelihood of the full set of participant data are shown in Table C.1.

The results based on out-of-sample log-likelihoods confirmed the results based on correlations in the main text. Fig. C.1 shows the out-of-sample
log-likelihoods for each experiment. The Bayesian structure learner (BSL) had a higher likelihood than the broken link and local structure learner
(LSL) models. Replacing the uniform prior used by the BSL with a symmetry prior improved the likelihood still further. The highest likelihood overall
was achieved by the fitted model, suggesting that the fitted model outperforms the symmetry model even when making out-of-sample predictions.
This result, however, may not be theoretically informative. Even though the fitted model accounts well for the data, it is hard to say why the fitted
prior in Fig. 21 is psychologically more natural than the symmetry prior. In our view, the most important message of Fig. C.1 and of the correlation-
based analyses in the main text is that the BSL and its two refinements (symmetry and fitted models) outperform the broken link and LSL models.

Appendix D. Additional figures

Figs. D.1 and D.2
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Fig. D.1. All possible directed graphs over three nodes.
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Fig. D.2. Model predictions and human judgments for additional blocks in Experiment 1.
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